To predict rare extreme events using deep neural networks, one encounters the so-called small data problem because even long-term observations often contain few extreme events. Here, we investigate a model-assisted framework where the training data is obtained from numerical simulations, as opposed to observations, with adequate samples from extreme events. However, to ensure the trained networks are applicable in practice, the training is not performed on the full simulation data; instead we only use a small subset of observable quantities which can be measured in practice. We investigate the feasibility of this model-assisted framework on three different dynamical systems (Rossler attractor, FitzHugh-Nagumo model, and a turbulent fluid flow) and three different deep neural network architectures (feedforward, long short-term memory, and reservoir computing). In each case, we study the prediction accuracy, robustness to noise, reproducibility under repeated training, and sensitivity to the type of input data. In particular, we find long short-term memory networks to be most robust to noise and to yield relatively accurate predictions, while requiring minimal fine-tuning of the hyperparameters.
翻译:为了利用深层神经网络预测罕见的极端事件,人们遇到了所谓的小数据问题,因为即使是长期观测也往往包含极少极端事件。在这里,我们调查一个模型辅助框架,从数字模拟中获取培训数据,而不是观测,并有充足的极端事件样本。然而,为了确保经过培训的网络在实践中适用,培训没有以完整的模拟数据进行;相反,我们只使用少量可观测数量,可以在实践中加以测量。我们调查这个模型辅助框架在三个不同的动态系统(Rossler吸引器、FitzHugh-Nagumo模型和动荡流体流体流)和三个不同的深层神经网络结构(前方、长期记忆和储油量计算)上的可行性。我们每个案例都研究预测准确性、对噪音的稳健性、反复培训下的再生力和对输入数据种类的敏感性。特别是,我们发现长期的短期记忆网络对噪音和相对准确的预测最为有力,同时需要对超光度进行最低限度的微调。