We study estimation and inference on causal parameters under finely stratified rerandomization designs, which use baseline covariates to match units into groups (e.g. matched pairs), then rerandomize within-group treatment assignments until a balance criterion is satisfied. We show that finely stratified rerandomization does partially linear regression adjustment by design, providing nonparametric control over the covariates used for stratification, and linear control over the rerandomization covariates. We also introduce novel rerandomization criteria, allowing for nonlinear imbalance metrics and proposing a minimax scheme that optimizes the balance criterion using pilot data or prior information provided by the researcher. While the asymptotic distribution of generalized method of moments (GMM) estimators under stratified rerandomization is generically non-Gaussian, we show how to restore asymptotic normality using optimal ex-post linear adjustment. This allows us to provide simple asymptotically exact inference methods for superpopulation parameters, as well as efficient conservative inference methods for finite population parameters.
翻译:暂无翻译