The combination of big data and deep learning is a world-shattering technology that can greatly impact any objective if used properly. With the availability of a large volume of health care datasets and progressions in deep learning techniques, systems are now well equipped to predict the future trend of any health problems. From the literature survey, we found the SVM was used to predict the heart failure rate without relating objective factors. Utilizing the intensity of important historical information in electronic health records (EHR), we have built a smart and predictive model utilizing long short-term memory (LSTM) and predict the future trend of heart failure based on that health record. Hence the fundamental commitment of this work is to predict the failure of the heart using an LSTM based on the patient's electronic medicinal information. We have analyzed a dataset containing the medical records of 299 heart failure patients collected at the Faisalabad Institute of Cardiology and the Allied Hospital in Faisalabad (Punjab, Pakistan). The patients consisted of 105 women and 194 men and their ages ranged from 40 and 95 years old. The dataset contains 13 features, which report clinical, body, and lifestyle information responsible for heart failure. We have found an increasing trend in our analysis which will contribute to advancing the knowledge in the field of heart stroke prediction.
翻译:大数据与深层次学习相结合是一种世界性技术,如果使用得当,可以极大地影响任何目标。随着大量保健数据集和深层学习技术的进展,现在各系统完全有能力预测任何健康问题的未来趋势。从文献调查中,我们发现SVM用于预测心脏病发病率,没有相关的客观因素。利用电子健康记录中重要历史信息的密集程度,我们利用长期短期记忆(LSTM)建立了一个智能和预测模型,并根据该健康记录预测未来心脏衰竭趋势。因此,这项工作的基本承诺是利用基于病人电子医学信息的LSTM预测心脏衰竭。我们分析了一个数据集,其中载有费萨拉巴德心脏病研究所和费萨拉巴巴德联合医院收集的299名心衰竭病人的医疗记录(Punjab,巴基斯坦)。由105名妇女和194名男子组成的病人及其年龄从40岁到95岁不等。该数据集包含13个特征,其中报告了临床、心脏机能和生活方式信息的变化趋势,我们发现心脏机能领域将推动对心脏机能领域的了解。