Brain functional connectivity (FC) reveals biomarkers for identification of various neuropsychiatric disorders. Recent application of deep neural networks (DNNs) to connectome-based classification mostly relies on traditional convolutional neural networks using input connectivity matrices on a regular Euclidean grid. We propose a graph deep learning framework to incorporate the non-Euclidean information about graph structure for classifying functional magnetic resonance imaging (fMRI)-derived brain networks in major depressive disorder (MDD). We design a novel graph autoencoder (GAE) architecture based on the graph convolutional networks (GCNs) to embed the topological structure and node content of large-sized fMRI networks into low-dimensional latent representations. In network construction, we employ the Ledoit-Wolf (LDW) shrinkage method to estimate the high-dimensional FC metrics efficiently from fMRI data. We consider both supervised and unsupervised approaches for the graph embedding learning. The learned embeddings are then used as feature inputs for a deep fully-connected neural network (FCNN) to discriminate MDD from healthy controls. Evaluated on two resting-state fMRI (rs-fMRI) MDD datasets, results show that the proposed GAE-FCNN model significantly outperforms several state-of-the-art methods for brain connectome classification, achieving the best accuracy using the LDW-FC edges as node features. The graph embeddings of fMRI FC networks learned by the GAE also reveal apparent group differences between MDD and HC. Our new framework demonstrates feasibility of learning graph embeddings on brain networks to provide discriminative information for diagnosis of brain disorders.
翻译:脑功能连通( FC) 显示用于识别各种神经神经精神紊乱的生物标志。 最近应用深神经网络( DNNS) 进行基于内联的分类,主要依靠传统神经神经网络,在常规的 Euclidean 网格上使用输入连接矩阵。 我们提议了一个图形深度学习框架, 以纳入用于对功能磁共振成像(fMRI) 衍生的脑网络进行分类的图表结构非欧洲语言信息。 我们考虑在主要压抑性疾病(MDDD)中采用监督性和不统一的方法进行图形嵌入。 我们设计了一个基于图形变异网络( GCNs) 的新型神经神经网络( GCNs) 将大型FMRI 网络的表层结构和节点内容嵌入到低维度潜深层潜伏图层图示中。 在网络中,我们采用 Ledoitit-Wolf(LDW) 缩图解方法来估计功能磁共振动成像成像成像成像成像( FDDDM) 的硬体模型中,我们两个完全连接的内径直径的内径内部网络( FNC) IM 将ODDFDFDFDFDM) 的智能网络( FDDDM) 测试的模型的模型的模型显示若干的内测算结果。