We consider the problem of testing whether an unknown and arbitrary set $S \subseteq \mathbb{R}^n$ (given as a black-box membership oracle) is convex, versus $\varepsilon$-far from every convex set, under the standard Gaussian distribution. The current state-of-the-art testing algorithms for this problem make $2^{\tilde{O}(\sqrt{n})\cdot \mathrm{poly}(1/\varepsilon)}$ non-adaptive queries, both for the standard testing problem and for tolerant testing. We give the first lower bounds for convexity testing in the black-box query model: - We show that any one-sided tester (which may be adaptive) must use at least $n^{\Omega(1)}$ queries in order to test to some constant accuracy $\varepsilon>0$. - We show that any non-adaptive tolerant tester (which may make two-sided errors) must use at least $2^{\Omega(n^{1/4})}$ queries to distinguish sets that are $\varepsilon_1$-close to convex versus $\varepsilon_2$-far from convex, for some absolute constants $0<\varepsilon_1<\varepsilon_2$. Finally, we also show that for any constant $c>0$, any non-adaptive tester (which may make two-sided errors) must use at least $n^{1/4 - c}$ queries in order to test to some constant accuracy $\varepsilon>0$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月25日
Arxiv
0+阅读 · 2024年11月22日
Arxiv
0+阅读 · 2024年11月21日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年11月25日
Arxiv
0+阅读 · 2024年11月22日
Arxiv
0+阅读 · 2024年11月21日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员