Despite advances in neural machine translation, cross-lingual retrieval tasks in which queries and documents live in different natural language spaces remain challenging. Although neural translation models may provide an intuitive approach to tackle the cross-lingual problem, their resource-consuming training and advanced model structures may complicate the overall retrieval pipeline and reduce users engagement. In this paper, we build our end-to-end Cross-Lingual Arabic Information REtrieval (CLAIRE) system based on the cross-lingual word embedding where searchers are assumed to have a passable passive understanding of Arabic and various supporting information in English is provided to aid retrieval experience. The proposed system has three major advantages: (1) The usage of English-Arabic word embedding simplifies the overall pipeline and avoids the potential mistakes caused by machine translation. (2) Our CLAIRE system can incorporate arbitrary word embedding-based neural retrieval models without structural modification. (3) Early empirical results on an Arabic news collection show promising performance.
翻译:尽管在神经机器翻译方面取得了进展,但跨语言检索任务仍然具有挑战性,因为查询和文件在不同自然语言空间中存在,虽然神经翻译模式可以为解决跨语言问题提供直观方法,但其耗资培训和先进的模型结构可能会使整个检索管道复杂化,减少用户参与。在本文件中,我们根据跨语言嵌入词端到端的跨语言阿拉伯语信息检索网(CLAIRE)系统建立我们基于跨语言嵌入词的端到端的跨语言的阿拉伯语信息检索网(CLAIRE)系统,其中搜索者假定对阿拉伯语有可逾越的被动理解,并且提供各种英文辅助信息,以帮助检索经验。拟议的系统有三大优点:(1) 使用英语嵌入词将整个管道简化,避免机器翻译可能造成的错误。(2) 我们的CLAIRE系统可以在不作结构修改的情况下纳入任意的单词嵌入神经检索模型。(3) 阿拉伯语新闻收藏的早期经验结果显示有良好的表现。