A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.
翻译:本文将考虑不同时间回归模型的一般类别。 我们通过使用局部线性 M 估计来估计回归系数。 对于这些估计者来说,我们获得了薄弱的巴哈杜尔表征,并用来构建同时的信任带。 为了实际实施,我们提议了一个基于陷阱的方法,以绕过理论同时带对数缓慢的对数趋同。我们的结果大大概括和统一了几个时间性回归和自动回归模型的处理方法。在模拟中研究ARCH和GARCH模型的性能,并通过分析一些流行的财务数据集来介绍我们研究的一些实际应用。