The multinomial probit Bayesian additive regression trees (MPBART) framework was proposed by Kindo et al. (KD), approximating the latent utilities in the multinomial probit (MNP) model with BART (Chipman et al. 2010). Compared to multinomial logistic models, MNP does not assume independent alternatives and the correlation structure among alternatives can be specified through multivariate Gaussian distributed latent utilities. We introduce two new algorithms for fitting the MPBART and show that the theoretical mixing rates of our proposals are equal or superior to the existing algorithm in KD. Through simulations, we explore the robustness of the methods to the choice of reference level, imbalance in outcome frequencies, and the specifications of prior hyperparameters for the utility error term. The work is motivated by the application of generating posterior predictive distributions for mortality and engagement in care among HIV-positive patients based on electronic health records (EHRs) from the Academic Model Providing Access to Healthcare (AMPATH) in Kenya. In both the application and simulations, we observe better performance using our proposals as compared to KD in terms of MCMC convergence rate and posterior predictive accuracy.


翻译:由Kindo等人(KD)提出,与BART(Chipman等人,2010年)相比,Kindo等人(KD)提出了多名生原生原生的重金回归树(MPBART)框架,与BART(Chipman等人,2010年)相比,多名生原生原生原生原生原生(MNP)模型中的潜在公用事业(MNP)模式(Chipman等人,2010年)。与多名化后勤模型相比,MNP并不假设独立的替代品,替代品之间的相关结构可以通过多变高斯分布式潜在公用事业来具体确定。我们引入了两种新的算法来安装MPBART,并表明我们提案的理论混合率与KD的现有算法相同或更高。我们通过模拟,探索选择参考水平、结果频率失衡和以往超参数术语术语的规格方法的稳健性性。这项工作的动力是应用“肯尼亚提供保健的学术模型”的理论模型(EHRs)来生成艾滋病毒阳性病人的死亡率和护理的预测分布。在应用与KMMD术语中的精确度预测率。我们观测在应用了“海市”预测率。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Science 一周论文导读 | 2018 年 11 月 16 日
科研圈
7+阅读 · 2018年11月25日
Science 一周论文导读 | 2018 年 8 月 4 日
科研圈
7+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Science 一周论文导读 | 2018 年 11 月 16 日
科研圈
7+阅读 · 2018年11月25日
Science 一周论文导读 | 2018 年 8 月 4 日
科研圈
7+阅读 · 2018年8月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员