Every representative democracy must specify a mechanism under which voters choose their representatives. The most common mechanism in the United States -- Winner takes all single-member districts -- both enables substantial partisan gerrymandering and constrains `fair' redistricting, preventing proportional representation in legislatures. We study the design of multi-member districts (MMDs), in which each district elects multiple representatives, potentially through a non-Winner takes all voting rule. We carry out large-scale empirical analyses for the U.S. House of Representatives under MMDs with different social choice functions, under algorithmically generated maps optimized for either partisan benefit or proportionality. Doing so requires efficiently incorporating predicted partisan outcomes -- under various multi-winner social choice functions -- into an algorithm that optimizes over an ensemble of maps. We find that with three-member districts using Single Transferable Vote, fairness-minded independent commissions would be able to achieve proportional outcomes in every state up to rounding, and advantage-seeking partisans would have their power to gerrymander significantly curtailed. Simultaneously, such districts would preserve geographic cohesion, an arguably important aspect of representative democracies. In the process, we advance a rich research agenda at the intersection of social choice and computational gerrymandering.
翻译:每个代议制民主必须规定一个选民选择其代表的机制。美国最常见的机制 -- -- 温纳拥有所有单一成员选区 -- -- 最常用的机制是,温纳拥有所有单一成员选区 -- -- 两者都能够进行实质性的党派干预,并限制`公平'重新划分,防止立法机构中出现比例代表制。我们研究多成员选区的设计,其中每个选区选举多代表制(MMDs),有可能通过非温纳制规则选出所有投票代表制。我们为具有不同社会选择功能的美国众议院进行大规模的经验分析,根据按逻辑绘制的地图,优化党派利益或相称性。这样做需要有效地将预测的党派结果 -- -- 在各种多赢的社会选择功能下 -- -- 纳入一种能够优化组合地图的算法中。我们发现,如果三个选区使用单一可转移的选票,公平心独立委员会将能够在每个州取得比例结果,然后进行四舍,而追求优势的党派将拥有他们拉伸展的能力。与此同时,这样的区域将保持地域凝聚力,这是代表民主国家的跨度选择的一个重要方面。我们发现,在前进过程中将保持富有的社会选择。