An essential task for a multi-robot system is generating a common understanding of the environment and relative poses between robots. Cooperative tasks can be executed only when a vehicle has knowledge of its own state and the states of the team members. However, this has primarily been achieved with direct rendezvous between underwater robots, via inter-robot ranging. We propose a novel distributed multi-robot simultaneous localization and mapping (SLAM) framework for underwater robots using imaging sonar-based perception. By passing only scene descriptors between robots, we do not need to pass raw sensor data unless there is a likelihood of inter-robot loop closure. We utilize pairwise consistent measurement set maximization (PCM), making our system robust to erroneous loop closures. The functionality of our system is demonstrated using two real-world datasets, one with three robots and another with two robots. We show that our system effectively estimates the trajectories of the multi-robot system and keeps the bandwidth requirements of inter-robot communication low. To our knowledge, this paper describes the first instance of multi-robot SLAM using real imaging sonar data (which we implement offline, using simulated communication). Code link: https://github.com/jake3991/DRACo-SLAM.
翻译:多机器人系统的一项基本任务是使机器人对环境和相对构成形成共同的理解。只有当飞行器了解其自身状态和团队成员状态时,才能执行合作任务。然而,这主要是通过机器人间测距法在水下机器人之间直接会合而实现的。我们提议为使用成像声纳感知的水下机器人建立一个新颖的分布式多机器人同步本地化和绘图框架(SLAM)。如果机器人之间只通过场景描述器,我们不需要通过原始传感器数据,除非有跨机器人环关闭的可能性。我们使用对对称一致的测量组最大化(PCM),使我们的系统对错误环关闭具有强大性。我们系统的功能是通过两个真实世界数据集演示的,一个是三个机器人,另一个是两个机器人。我们展示我们的系统有效估计了多机器人系统的轨迹,并保持了跨机器人通信的带宽要求低。我们知道,这篇论文描述了多机器人/SLA39M/SLASM的首例通信,使用真实的图像数据链接:ADRAM/DR数据。我们用真实的MADR数据连接将多机器人/DRA/DARASM数据进行。