Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization issue of segmentation though it is important in practice. In this paper, we address the problem of personalized image segmentation. The objective is to generate more accurate segmentation results on unlabeled personalized images by investigating the data's personalized traits. To open up future research in this area, we collect a large dataset containing various users' personalized images called PIS (Personalized Image Semantic Segmentation). We also survey some recent researches related to this problem and report their performance on our dataset. Furthermore, by observing the correlation among a user's personalized images, we propose a baseline method that incorporates the inter-image context when segmenting certain images. Extensive experiments show that our method outperforms the existing methods on the proposed dataset. The code and the PIS dataset will be made publicly available.
翻译:在公共数据集方面受过培训的语义分解模型近年来取得了巨大成功。 但是, 这些模型并没有考虑个人化的分解问题, 虽然这在实际中很重要 。 在本文中, 我们处理个性化图像分解问题 。 目标是通过调查数据的个人化特性, 生成未贴标签的个人化图像上更准确的分解结果 。 为了打开今后在这一领域的研究, 我们收集了一个大型数据集, 包含各种用户的个性化图像, 名为 PIS ( 个人化图像分解) 。 我们还调查了与这一问题有关的最近一些研究, 并在我们的数据集上报告其表现 。 此外, 通过观察用户个性化图像的关联性, 我们提出了一种基线方法, 在分割某些图像时纳入图像的图像间环境 。 广泛的实验表明, 我们的方法超过了在拟议数据集上的现有方法 。 代码和 PIS 数据集将被公布 。