Art is an artistic method of using digital technologies as a part of the generative or creative process. With the advent of digital currency and NFTs (Non-Fungible Token), the demand for digital art is growing aggressively. In this manuscript, we advocate the concept of using deep generative networks with adversarial training for a stable and variant art generation. The work mainly focuses on using the Deep Convolutional Generative Adversarial Network (DC-GAN) and explores the techniques to address the common pitfalls in GAN training. We compare various architectures and designs of DC-GANs to arrive at a recommendable design choice for a stable and realistic generation. The main focus of the work is to generate realistic images that do not exist in reality but are synthesised from random noise by the proposed model. We provide visual results of generated animal face images (some pieces of evidence showing a blend of species) along with recommendations for training, architecture and design choices. We also show how training image preprocessing plays a massive role in GAN training.
翻译:艺术是利用数字技术作为基因化或创造性过程一部分的一种艺术方法。随着数字货币和NFTs(非可变调调)的出现,对数字艺术的需求正在急剧增长。在这个手稿中,我们提倡使用深基因网络的概念,为稳定的和变异的艺术生成提供对抗性培训。工作主要侧重于利用深革命基因反反转网络(DC-GAN),并探索解决GAN培训中常见的陷阱的技术。我们比较了DC-GANs的各种结构和设计,以便为稳定和现实的一代找到一个建议性的设计选择。工作的主要重点是产生现实的图像,这些图像在现实中并不存在,而是根据拟议模型的随机噪音合成。我们提供了生成的动物面貌图像的视觉结果(一些表明物种混合的证据),同时提出了培训、结构和设计选择的建议。我们还展示了培训图像预处理如何在GAN培训中发挥巨大作用。