Facial expression generation has always been an intriguing task for scientists and researchers all over the globe. In this context, we present our novel approach for generating videos of the six basic facial expressions. Starting from a single neutral facial image and a label indicating the desired facial expression, we aim to synthesize a video of the given identity performing the specified facial expression. Our approach, referred to as FEV-GAN (Facial Expression Video GAN), is based on Spatio-temporal Convolutional GANs, that are known to model both content and motion in the same network. Previous methods based on such a network have shown a good ability to generate coherent videos with smooth temporal evolution. However, they still suffer from low image quality and low identity preservation capability. In this work, we address this problem by using a generator composed of two image encoders. The first one is pre-trained for facial identity feature extraction and the second for spatial feature extraction. We have qualitatively and quantitatively evaluated our model on two international facial expression benchmark databases: MUG and Oulu-CASIA NIR&VIS. The experimental results analysis demonstrates the effectiveness of our approach in generating videos of the six basic facial expressions while preserving the input identity. The analysis also proves that the use of both identity and spatial features enhances the decoder ability to better preserve the identity and generate high-quality videos. The code and the pre-trained model will soon be made publicly available.
翻译:显性表达方式的生成一直是全球科学家和研究人员的一项令人感兴趣的任务。 在这方面,我们展示了制作六种基本面部表达式的视频的新颖方法。 从单一中性面部图像和显示所需面部表达式的标签开始,我们的目标是合成一个显示特定面部表达式的给定身份的视频。我们称之为FEV-GAN(Facial 表达式视频GAN)的方法基于Spatio-时空共振GANs,已知该数据库既模拟内容,也模拟同一网络的动态。基于这样一个网络的以往方法已经显示出以平滑的时间演变方式制作连贯视频的很好的能力。然而,这些方法仍然受到图像质量低和身份保护能力低的困扰。在这项工作中,我们通过使用由两个图像编码组成的生成器来解决这一问题。我们称为FEVEV-GAN(Facial 表达式视频) 的方法以预先训练过面部特征提取,第二个是空间特征提取的。我们从质量和数量上评价了两个国际面部面部表达式基准数据库的模式:MUG和Olu-CAIR&VIS。实验结果分析显示我们制作高质量方法的有效性,同时改进了身份分析,同时改进了我们制作了身份特性特性特性特性特性特性特性特性特性特性特性分析。