Motivated by a medical decision making problem, this paper focuses on an impulse control problem for a class of piecewise deterministic semi-Markov processes. The process evolves deterministically between jumps and the inter-jump times have a general distribution. %that may depend on both coordinates. The discrete coordinate (e.g. global health state of the patient) is not observed, the continuous one (e.g. result of some blood measurement) is observed with noise at some (possibly scarce) observation times. The objective %in this paper is to optimally select the observation dates while controlling the process so that it remains close to a nominal value. At each visit to the medical center, a cancer patient undergoes possibly invasive analyses, and {treatment and next visit dates} are scheduled according to their result and the patient history. Frequent observations lead to a better estimation of the hidden state of the process but may be too costly for the center and/or patient. Rare observations may lead to undetected possibly lethal degradation of the patient's health. We exhibit an explicit policy close to optimality based on discretisations of the process. Construction of discretisation grids are discussed at length. The paper is illustrated with experiments on synthetic data fitted from the Intergroupe Francophone du My\'elome 2009 clinical trial.
翻译:本文受到医学决策问题的驱使, 侧重于对某类精密的半马尔科夫过程的冲动控制问题。 这一过程在跳跃和跨跳时之间演进决定性地演变为一般分布。 取决于两个坐标的% 。 离散的坐标( 如病人的全球健康状况) 没有得到观察, 连续的坐标( 例如某种血液测量的结果) 在某次( 可能稀缺的) 观察时会观察到噪音( 血液测量的结果) 。 本文的目标% 是在控制过程的同时优化选择观察日期, 使其保持接近名义价值 。 在每次访问医疗中心时, 癌症病人都可能进行入侵性分析, { 治疗和下次访问日期} 都根据其结果和病人历史排定时间。 频繁的观察可以更好地估计过程的隐蔽状态, 但对于中心和/ 病人来说可能太昂贵。 很少的观察可能导致无法察觉到病人健康可能致命性退化。 我们展示了一种明确的政策, 接近于离散化的临床实验中, 我们从2009年的深度中演示了离心模型。