In computer graphics, simplifying a polygonal mesh surface~$\mathcal{M}$ into a geometric proxy that maintains close conformity to~$\mathcal{M}$ is crucial, as it can significantly reduce computational demands in various applications. In this paper, we introduce the Implicit Thin Shell~(ITS), a concept designed to implicitly represent the sandwich-walled space surrounding~$\mathcal{M}$, defined as~$\{\textbf{x}\in\mathbb{R}^3|\epsilon_1\leq f(\textbf{x}) \leq \epsilon_2, \epsilon_1< 0, \epsilon_2>0\}$. Here, $f$ is an approximation of the signed distance function~(SDF) of~$\mathcal{M}$, and we aim to minimize the thickness~$\epsilon_2-\epsilon_1$. To achieve a balance between mathematical simplicity and expressive capability in~$f$, we employ a tri-variate tensor-product B-spline to represent~$f$. This representation is coupled with adaptive knot grids that adapt to the inherent shape variations of~$\mathcal{M}$, while restricting~$f$'s basis functions to the first degree. In this manner, the analytical form of~$f$ can be rapidly determined by solving a sparse linear system. Moreover, the process of identifying the extreme values of~$f$ among the infinitely many points on~$\mathcal{M}$ can be simplified to seeking extremes among a finite set of candidate points. By exhausting the candidate points, we find the extreme values~$\epsilon_1<0$ and $\epsilon_2>0$ that minimize the thickness. The constructed ITS is guaranteed to wrap~$\mathcal{M}$ rigorously, without any intersections between the bounding surfaces and~$\mathcal{M}$. ITS offers numerous potential applications thanks to its rigorousness, tightness, expressiveness, and computational efficiency. We demonstrate the efficacy of ITS in rapid inside-outside tests and in mesh simplification through the control of global error.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员