How can we recommend existing bundles to users accurately? How can we generate new tailored bundles for users? Recommending a bundle, or a group of various items, has attracted widespread attention in e-commerce owing to the increased satisfaction of both users and providers. Bundle matching and bundle generation are two representative tasks in bundle recommendation. The bundle matching task is to correctly match existing bundles to users while the bundle generation is to generate new bundles that users would prefer. Although many recent works have developed bundle recommendation models, they fail to achieve high accuracy since they do not handle heterogeneous data effectively and do not learn a method for customized bundle generation. In this paper, we propose BundleMage, an accurate approach for bundle matching and generation. BundleMage effectively mixes user preferences of items and bundles using an adaptive gate technique to achieve high accuracy for the bundle matching. BundleMage also generates a personalized bundle by learning a generation module that exploits a user preference and the characteristic of a given incomplete bundle to be completed. BundleMage further improves its performance using multi-task learning with partially shared parameters. Through extensive experiments, we show that BundleMage achieves up to 6.6% higher nDCG in bundle matching and 6.3x higher nDCG in bundle generation than the best competitors. We also provide qualitative analysis that BundleMage effectively generates bundles considering both the tastes of users and the characteristics of target bundles.


翻译:如何向用户准确推荐现有捆包? 我们如何能为用户生成新的定制捆包? 我们如何能为用户生成新的定制捆包? 由于用户和提供者的满意度提高,建议一个捆包或一组不同项目在电子商务中引起了广泛关注? 捆绑匹配和捆绑生成是捆绑建议中具有代表性的两项任务。 捆绑匹配的任务是将现有捆包与用户正确匹配, 而捆绑生成则是产生用户喜欢的新捆包。 尽管许多近期工程开发了捆绑建议模型, 但由于它们无法有效处理不同数据, 并且不学习定制捆绑生成的方法, 如何为用户创造新的捆绑? 在本文中, 我们提出捆绑Mage, 一种对捆绑和捆绑的准确性特征, 套绑在一起将用户对项目和捆绑的偏好, 使用适应性门技术实现捆绑。 捆绑还产生个性化的捆绑, 学习一个利用用户偏偏好和不完整捆绑特性完成的模块。 捆绑会通过部分共享参数来进一步改进其业绩。 通过广泛的实验, 我们展示了捆绑的捆绑和捆绑的特性, 6- bassleMDLAxMDC 也考虑了Bassing 将 和Bassing SADRAVDRADRDRDRDR 将 将 和BDRDRDRDRDRDS 与6. 达 达 与6.DRBDRBDRDRDSDSDSDSDSDSDSDS

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年6月30日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
25+阅读 · 2022年1月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员