In the last few years, the interest in knowledge bases has grown exponentially in both the research community and the industry due to their essential role in AI applications. Entity alignment is an important task for enriching knowledge bases. This paper provides a comprehensive tutorial-type survey on representative entity alignment techniques that use the new approach of representation learning. We present a framework for capturing the key characteristics of these techniques, propose two datasets to address the limitation of existing benchmark datasets, and conduct extensive experiments using the proposed datasets. The framework gives a clear picture of how the techniques work. The experiments yield important results about the empirical performance of the techniques and how various factors affect the performance. One important observation not stressed by previous work is that techniques making good use of attribute triples and relation predicates as features stand out as winners.
翻译:在过去几年里,对知识基础的兴趣在研究界和工业界都成倍增长,因为它们在AI应用中起着重要作用。实体调整是丰富知识基础的一项重要任务。本文件对使用新的代表性学习方法的具有代表性的实体调整技术进行了全面的辅导性调查。我们提出了一个捕捉这些技术关键特征的框架,提出了解决现有基准数据集局限性的两个数据集,并利用拟议的数据集进行了广泛的实验。框架清楚地描述了这些技术是如何运作的。实验对这些技术的经验性表现以及各种因素如何影响业绩产生了重要结果。以前的工作没有强调的一项重要意见是,充分利用属性三重和关系前述特征的技术是胜出者。