In this paper, we propose an instance similarity learning (ISL) method for unsupervised feature representation. Conventional methods assign close instance pairs in the feature space with high similarity, which usually leads to wrong pairwise relationship for large neighborhoods because the Euclidean distance fails to depict the true semantic similarity on the feature manifold. On the contrary, our method mines the feature manifold in an unsupervised manner, through which the semantic similarity among instances is learned in order to obtain discriminative representations. Specifically, we employ the Generative Adversarial Networks (GAN) to mine the underlying feature manifold, where the generated features are applied as the proxies to progressively explore the feature manifold so that the semantic similarity among instances is acquired as reliable pseudo supervision. Extensive experiments on image classification demonstrate the superiority of our method compared with the state-of-the-art methods. The code is available at https://github.com/ZiweiWangTHU/ISL.git.
翻译:在本文中,我们建议对未受监督的特征表示采用实例相似性学习(ISL)方法。 常规方法在特征空间中为高度相似性指定了近似性对称, 通常导致大型社区出现错误的对称关系, 因为欧洲大陆的距离无法描述特征多处的真正语义相似性。 相反, 我们的方法以不受监督的方式埋设了特征的多重性, 通过这种方式学习了各实例之间的语义相似性, 以获得歧视性的描述性。 具体地说, 我们使用基因对立网络(GAN)来埋设基本特征的方块, 生成的特征被用作逐步探索特征的代理人, 从而获得各种实例之间的语义相似性作为可靠的假监督。 有关图像分类的广泛实验表明我们的方法优于最新工艺方法。 该代码可在 https://github. com/ ZiweiWangTHU/ ISL.git上查阅 。