Speech separation has been well developed, with the very successful permutation invariant training (PIT) approach, although the frequent label assignment switching happening during PIT training remains to be a problem when better convergence speed and achievable performance are desired. In this paper, we propose to perform self-supervised pre-training to stabilize the label assignment in training the speech separation model. Experiments over several types of self-supervised approaches, several typical speech separation models and two different datasets showed that very good improvements are achievable if a proper self-supervised approach is chosen.


翻译:语音分离已经得到很好的发展,采用非常成功的变式培训方法,尽管在PIT培训期间经常出现的标签派任转换在PIT培训期间仍是一个问题,因为需要更快的趋同速度和可实现的绩效。 在本文中,我们提议进行自我监督的预先培训,以稳定语言分离模式培训中的标签派任。 在若干类型的自我监督方法上进行的实验、几个典型的语音隔离模型和两个不同的数据集表明,如果选择适当的自我监督方法,那么可以实现非常良好的改进。

0
下载
关闭预览

相关内容

人工智能的理论及实践 知识图谱,160页pdf
专知会员服务
102+阅读 · 2021年6月30日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年12月29日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员