The Shapley value is one of the most widely used measures of feature importance partly as it measures a feature's average effect on a model's prediction. We introduce joint Shapley values, which directly extend Shapley's axioms and intuitions: joint Shapley values measure a set of features' average contribution to a model's prediction. We prove the uniqueness of joint Shapley values, for any order of explanation. Results for games show that joint Shapley values present different insights from existing interaction indices, which assess the effect of a feature within a set of features. The joint Shapley values provide intuitive results in ML attribution problems. With binary features, we present a presence-adjusted global value that is more consistent with local intuitions than the usual approach.
翻译:Shapley 值是使用最广泛且具有显著重要性的测量尺度之一, 这部分地因为它测量了一个特征对模型预测的平均效果。 我们引入了共同的 Shapley 值, 直接扩展了 Shapley 的常识和直觉: 共同 Shapley 值测量了一组特征对模型预测的平均贡献。 我们用任何顺序来证明共同 Shapley 值的独特性。 游戏结果显示, 共同 Shapley 值与现有的互动指数有着不同的洞察力, 后者评估了一组特征中某个特征的效果。 联合 Shapley 值在 ML 属性问题上提供了直观结果。 与二进制特征相比, 我们呈现了一种更符合本地直觉的全球价值。