In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [24]. In particular, we design a high order HWENO integration for the integrals of source term and fluxes based on the point value of the solution and its spatial derivatives, and the principles of residual distribution schemes are adapted to obtain steady state solutions. Two advantages of the novel HWENO framework have been shown in [24]: first, compared with the traditional HWENO framework, the proposed method does not need to introduce additional auxiliary equations to update the derivatives of the unknown variable, and just compute them from the current point value of the solution and its old spatial derivatives, which saves the computational storage and CPU time, and thereby improve the computational efficiency of the traditional HWENO framework. Second, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller at the same grid. Thus, it is also a compact scheme when we design the higher order accuracy, compared with that in [11] Chou and Shu proposed. Extensive numerical experiments for one- and two-dimensional scalar and systems problems confirm the high order accuracy and good quality of our scheme.


翻译:在本文中,我们开发了一种高顺序剩余分配(RD)方法,用于在[24]最近开发的新赫米特加权基本上非循环(HWENO)框架内解决稳定的国家养护法。特别是,我们根据解决方案及其空间衍生物的点值,设计出一种高顺序的源术语和通量组合集集,从而根据解决方案及其空间衍生物的点值,调整了剩余分配办法的原则,以获得稳定的国家解决办法。[24]中显示了新的HWENO框架的两个优点:首先,与传统的HWENO框架相比,拟议的方法不需要引入额外的辅助方程式来更新未知变量的衍生物,而只是从解决方案的当前点值及其旧的空间衍生物中将其计算出来,从而节省了计算存储和CPU的时间,从而改进了传统的HWENO框架的计算效率。第二,与传统的WENO方法相比,HWENO方法的重建十分集中,其边界处理更为简便,而且同一电网的数字错误较小。因此,我们设计高质量和高质量系统时,它也是一个压缩的系统,与高质量和高质量系统相比。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2018年12月3日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员