In this paper, we investigate the imaging inverse problem by employing an infinite-dimensional Bayesian inference method with a general fractional total variation-Gaussian (GFTG) prior. This novel hybrid prior is a development for the total variation-Gaussian (TG) prior and the non-local total variation-Gaussian (NLTG) prior, which is a combination of the Gaussian prior and a general fractional total variation regularization term, which contains a wide class of fractional derivative. Compared to the TG prior, the GFTG prior can effectively reduce the staircase effect, enhance the texture details of the images and also provide a complete theoretical analysis in the infinite-dimensional limit similarly to TG prior. The separability of the state space in Bayesian inference is essential for developments of probability and integration theory in infinite-dimensional setting, thus we first introduce the corresponding general fractional Sobolev space and prove that the space is a separable Banach space. Thereafter, we give the well-posedness and finite-dimensional approximation of the posterior measure of the Bayesian inverse problem based on the GFTG prior, and then the samples are extracted from the posterior distribution by using the preconditioned Crank-Nicolson (pCN) algorithm. Finally, we give several numerical examples of image reconstruction under liner and nonlinear models to illustrate the advantages of the proposed improved prior.
翻译:在本文中,我们通过使用一个无限维度贝耶斯推断法来调查成像反问题。 之前的GFTG可以有效减少螺旋效应, 强化图像的纹理细节, 并提供与以前TG类似的无限尺寸限制的全面理论分析。 巴伊西亚州空间的分离性对于在无限环境中发展概率和集成理论至关重要, 因此我们首先引入相应的一般分数索博列夫空间, 并证明空间是一个可分化的空间。 与之前的TG相比, GFTG 之前的GFG可以有效地减少螺旋效应, 增强图像的纹性细节, 并且提供与以前TG相似的无限尺寸限制的全面理论分析。 巴伊西亚州空间的分离性对于在无限环境中发展概率和集成理论至关重要, 因此我们首先引入相应的一般分数索博列夫空间, 并证明空间是一个可分解的空间。 之后, 我们根据当时的GFAFS前的模型模型的不精确性和可度近维度近度排序,, 最终通过GRFSimlex的模型对G的模型进行提取的模型的模型和GRestal imestrouplex 进行模拟的模拟的模拟的模拟的模拟。