The existing Fr\'echet regression is actually defined within a linear framework, since the weight function in the Fr\'echet objective function is linearly defined, and the resulting Fr\'echet regression function is identified to be a linear model when the random object belongs to a Hilbert space. Even for nonparametric and semiparametric Fr\'echet regressions, which are usually nonlinear, the existing methods handle them by local linear (or local polynomial) technique, and the resulting Fr\'echet regressions are (locally) linear as well. We in this paper introduce a type of nonlinear Fr\'echet regressions. Such a framework can be utilized to fit the essentially nonlinear models in a general metric space and uniquely identify the nonlinear structure in a Hilbert space. Particularly, its generalized linear form can return to the standard linear Fr\'echet regression through a special choice of the weight function. Moreover, the generalized linear form possesses methodological and computational simplicity because the Euclidean variable and the metric space element are completely separable. The favorable theoretical properties (e.g. the estimation consistency and presentation theorem) of the nonlinear Fr\'echet regressions are established systemically. The comprehensive simulation studies and a human mortality data analysis demonstrate that the new strategy is significantly better than the competitors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
49+阅读 · 2021年5月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2023年7月12日
Arxiv
49+阅读 · 2021年5月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员