We want to propose a new discretization ansatz for the second order Hessian complex exploiting benefits of isogeometric analysis, namely the possibility of high-order convergence and smoothness of test functions. Although our approach is firstly only valid in domains that are obtained by affine linear transformations of a unit cube, we see in the approach a relatively simple way to obtain inf-sup stable and arbitrary fast convergent methods for the underlying Hodge-Laplacians. Background for this is the theory of Finite Element Exterior Calculus (FEEC) which guides us to structure-preserving discrete sub-complexes.
翻译:我们想为赫塞西亚综合体第二顺序提出一个新的离散安萨兹,以利用异构分析的异构分析效益,即测试函数高度趋同和平稳的可能性。虽然我们的方法首先只在通过单立方体的线性折变获得的领域中有效,但我们在方法中看到一种相对简单的方式,为Hodge-Laplaceians的底部获得反向稳定、任意的快速趋同方法。 其背景是“FEEC ” 理论,它引导我们找到结构保持离散的子复合体。