In this work we study the time complexity for the search of local minima in random graphs whose vertices have i.i.d. cost values. We show that, for Erd\"os-R\'enyi graphs with connection probability given by $\lambda/n^\alpha$ (with $\lambda > 0$ and $0 < \alpha < 1$), a family of local algorithms that approximate a gradient descent find local minima faster than the full gradient descent. Furthermore, we find a probabilistic representation for the running time of these algorithms leading to asymptotic estimates of the mean running times.
翻译:在这项工作中,我们研究了在随机图中搜索本地迷你时的复杂时间,这些图的脊椎具有i.d.成本值。我们表明,对于Erd\"os-R\'enyi图,其连接概率由$\lambda/n ⁇ alpha$(美元=lambda > 0美元, 美元 < alpha < 1美元)给出,这是一个地方算法的组合,其接近梯度的下降速度比整个梯度下降速度快。此外,我们发现这些算法运行时间的概率代表了这些算法的运行时间,从而得出平均运行时间的无症状估计值。