Neural network stealing attacks have posed grave threats to neural network model deployment. Such attacks can be launched by extracting neural architecture information, such as layer sequence and dimension parameters, through leaky side-channels. To mitigate such attacks, we propose NeurObfuscator, a full-stack obfuscation tool to obfuscate the neural network architecture while preserving its functionality with very limited performance overhead. At the heart of this tool is a set of obfuscating knobs, including layer branching, layer widening, selective fusion and schedule pruning, that increase the number of operators, reduce/increase the latency, and number of cache and DRAM accesses. A genetic algorithm-based approach is adopted to orchestrate the combination of obfuscating knobs to achieve the best obfuscating effect on the layer sequence and dimension parameters so that the architecture information cannot be successfully extracted. Results on sequence obfuscation show that the proposed tool obfuscates a ResNet-18 ImageNet model to a totally different architecture (with 44 layer difference) without affecting its functionality with only 2% overall latency overhead. For dimension obfuscation, we demonstrate that an example convolution layer with 64 input and 128 output channels can be obfuscated to generate a layer with 207 input and 93 output channels with only a 2% latency overhead.


翻译:神经网络盗窃袭击对神经网络模型部署构成了严重威胁。这种袭击可以通过提取神经结构信息,如层序列和维度参数等神经结构信息,通过漏泄的侧通道,通过层序列和维度参数等提取神经结构信息。为了减轻这些袭击,我们提议 NeurObfuscator, 这是一种全斯塔式的模糊模糊工具, 用来混淆神经网络结构结构, 同时用非常有限的性能管理来维护其功能, 其核心是一套令人困惑的软体, 包括层分支、 层扩大、 有选择的聚合和时间表运行, 从而增加操作者的数量, 减少/ 增加延度, 以及缓存和 DRAM 访问的次数。 为了减轻这些袭击, 我们建议采用基于遗传算法的方法, 将固化 knobs 组合起来, 以在层序列和尺寸参数上取得最佳的模糊效果, 从而无法成功提取建筑信息。 解析的序列结果显示, 拟议的工具只能将ResNet-18 图像网络模型解析成一个完全不同的结构(有44层的粘度差异), 其功能只能通过2 的平层平面结构演示演示演示演示,, 只能显示我们的平层平层输出, 。

0
下载
关闭预览

相关内容

专知会员服务
47+阅读 · 2021年4月18日
专知会员服务
43+阅读 · 2020年9月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
整合全部顶尖目标检测算法:FAIR开源Detectron
炼数成金订阅号
6+阅读 · 2018年1月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月9日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
3+阅读 · 2018年10月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
47+阅读 · 2021年4月18日
专知会员服务
43+阅读 · 2020年9月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
整合全部顶尖目标检测算法:FAIR开源Detectron
炼数成金订阅号
6+阅读 · 2018年1月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
8+阅读 · 2021年5月9日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
3+阅读 · 2018年10月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员