CVPR是计算机视觉领域三大顶会中唯一一个年度学术会议。在快速更新迭代的计算机学科中,CVPR成为了计算机视觉领域的“顶级流量”。而在过去的这些年间,CVPR也有着许多的变化。在十多年前,CVPR不过1500人的参会规模,到了2019年参会人数已经超过了6500人,投稿数量也年年增长。

虽然CVPR每年都会评选出最佳论文,但我们今天将从另一个角度来评选CVPR这二十年来的TOP10。即以Web of Science上显示的论文的引用量作为论文影响力的参考,排列出近二十年来影响力最大的十篇论文。接下来我们将依次进行介绍。

TOP10 Rethinking the Inception Architecture for Computer Vision CVPR 2016

作者:Christian Szegedy,Vincent Vanhoucke,Sergey Ioffe,Jon Shlens,Zbigniew Wojna

机构:Google,伦敦大学

被引频次:4751

这篇论文又被称为Inception-v3,是GoogLeNet(Inception-v1)的延伸。GoogLeNet首次出现于2014年ILSVRC 比赛,并在当年的比赛中获得了冠军。Inception-v1的参数量远小于同期VGGNet,而性能却与之基本持平。相较于Inception-v1,Inception-v3做出的主要改进则是将卷积进行非对称拆分,以显著降低参数量,同时使得空间特征更为丰富。

TOP9 Densely Connected Convolutional Networks CVPR 2017

作者:Gao Huang,Zhuang Liu,Laurens van der Maaten,Kilian Q. Weinberger

机构:康奈尔大学,清华大学,Facebook AI Research

被引频次:5181

DenseNet也是CVPR2017的最佳论文之一。在当时的神经网络模型都遇到一个问题:随着网路层数的加深,训练过程中的前传信号和梯度信号在经过很多层之后可能会逐渐消失。而DenseNet的核心思想解决了这一问题。它对前每一层都加一个单独的 shortcut,使得任意两层网络都可以直接“沟通”。

而DenseNet的不足之处在于它的内存占用十分庞大。但瑕不掩瑜,DenseNet以其极具创新性的思路,不仅显著减轻了深层网络在训练过程中梯度消散而难以优化的问题,同时也取得了非常好的性能。

TOP8 You Only Look Once: Unified, Real-Time Object Detection CVPR 2016

作者:Joseph Redmon,Santosh Divvala,Ross Girshick,Ali Farhadiq

机构:华盛顿大学,Allen Institute for AI,Facebook AI Research

被引频次:5295

这一篇论文就是在目标检测领域大名鼎鼎的YOLO。其最新的版本已经更新到了YOLOv5,且每一代的发布都能在行业内卷齐新的热潮。

用YOLO的英文直译解释这一方法,就是只需要浏览一次就能识别出图中的物体的类别和位置。展开来说,YOLO的核心思想就是将目标检测转化为回归问题求解,并基于一个单独的端到端网络,完成从原始图像的输入到物体位置和类别的输出。这使得网络结构简单,且极大提升了检测速度。由于网络没有分支,所以训练也只需要一次即可完成。之后的很多检测算法都借鉴了这一思路。

TOP7 Rich feature hierarchies for accurate object detection and semantic segmentation CVPR 2014

作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik

机构:加利福尼亚大学伯克利分校

被引频次:6876

这篇文章的排名在YOLO之前,既合理又巧妙。因为在YOLO之前,目标检测领域可以说是RCNN的世界。RCNN是将CNN引入目标检测的开山之作,它改变了目标检测领域的主要研究思路。紧随其后的系列文章,如Fast RCNN和Faster RCNN等,都代表了该领域当时的最高水准。

在RCNN前经典的目标检测算法是使用滑动窗法依次判断所有可能的区域,而RCNN则采用Selective Search方法预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,这使得检测的速度大大提升。

TOP6 Rapid object detection using a boosted cascade of simple features CVPR 2001

作者:Paul Viola,Michael Jones

机构:三菱电气实验室 ,康柏剑桥研究实验室

被引频次:7033

这篇论文是本次盘点中最先发表的一篇,比其他九篇文章都早了十年左右,它在传统人脸检测中具有里程碑意义,因而本文提出的思想聚焦于传统的目标检测。

这篇论文主要解决了三个问题:一是减少了计算特征的时间,二是构建了简单又很有效的单分支决策树分类器,最后是从简单到复杂把多个分类器级联,对可能包含人脸的区域进行重点检测,从而显著提升了检测速度。

TOP5 Going Deeper with Convolutions CVPR 2015

作者:Christian Szegedy,Dragomir Anguelov, Dumitru Erhan,Vincent Vanhoucke,Yangqing Jia,Pierre Sermanet,Wei Liu,Scott Reed,Andrew Rabinovich

机构:Google,北卡罗来纳大学,密歇根大学

发布时间:2015年

被引频次:7269

可能大家已经发现了亮点,这篇论文的系列工作在前面就出现过。这篇论文就是开辟Inception家族,并在CNN分类器发展史上留下浓墨重彩的一笔的GoogLeNet。

在 Inception 出现之前,大部分流行 CNN 是将卷积层不断堆叠,让网络越来越深来得到更好的性能。而GoogLeNet 最大的特点就是使用 Inception 模块,并设计一种具有优良局部拓扑结构的网络,对输入图像并行地执行多个卷积运算或池化操作,将所有输出结果拼接为一个非常深的特征图。通过这种方式,GoogLeNet取得了非常惊艳的效果。

TOP4 ImageNet: A Large-Scale Hierarchical Image Database CVPR 2009

作者:Jia Deng,Wei Dong,Richard Socher,Li-Jia Li,Kai Li,Li Fei-Fei

机构:普林斯顿大学

发布时间:2009年

被引频次:8222

ImageNet是AI女神李飞飞团队构建的计算机视觉领域非常著名的海量的带标注图像数据集。它在图像分类、目标分割和目标检测中都有着无法撼动的地位。ImageNet从 2007 年开始到 2009 年完成,有超过 1500 万张图片。

可以毫不夸张的说,ImageNet 是图像处理算法的试金石。另外,从 2010 年起,每年 ImageNet 官方会举办挑战赛。Hinton团队提出的AlexNet也是在2012年的ImageNet挑战赛上一举成名,自此深度学习的热潮被点燃。

TOP3 Fully Convolutional Networks for Semantic Segmentation CVPR 2015

作者:Jonathan Long,Evan Shelhamer,Trevor Darrell

发布时间:2015年

被引频次:9027

FCN在我们之前盘点的图像分割TOP10中就出现过,并高居第一位。作为语义分割的开山之作,无论是图像分割TOP1,还是CVPRTOP3,FCN都是当之无愧的。FCN所提出的全卷积网络的概念,开创了用FCN做实例和像素级别理解系列方法的先河。后续非常多的方法都受到了FCN的思路启发。FCN的提出为目标识别、检测与分割也都做出了巨大的贡献。

TOP2 Histograms of oriented gradients for human detection CVPR 2005

作者:Navneet Dalal,Bill Triggs

被引频次:13389

图片 这篇论文所提出的方法简称HOG,是一种是非常经典的图像特征提取方法,在行人识别领域被应用得尤为多。虽然文章已经发表了十五年,但仍然常常被人们用于最新工作的思路参考。HOG将图像分成小的连通区域,将它称为细胞单元,然后采集细胞单元中各像素点的梯度的或边缘的方向直方图,把这些直方图组合起来就可以构成特征描述器。

TOP1 Deep Residual Learning for Image Recognition CVPR2016

作者:Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun

被引频次:32065

这篇论文作为第一名,的确是当之无愧。作为CVPR2016的最佳论文,它所提出的ResNet不仅在计算机视觉领域,而是在深度学习领域中都带来了颠覆式影响。

在当年,ResNet横扫 ImageNet 2015和COCO 榜单。也是从ResNet开始,神经网络在视觉分类任务上的性能第一次超越了人类。它也让当时第二次获得CVPR Best Paper的何恺明正式踏上了大神之路。

最初 ResNet 的设计是用来处理深层 CNN 结构中梯度消失和梯度爆炸的问题,它将输入从卷积层的每个块添加到输出,让每一层更容易学习恒等映射,并且还减少了梯度消失的问题。而如今,残差模块已经成为几乎所有 CNN 结构中的基本构造。

最后,我们来进行一下简要地总结。虽然本次盘点的是20年内CVPRTOP10,但是有超过半数的论文都是在近十年发表的,由此可以窥见深度学习在近年来的飞跃式发展。因此我们可以期待在未来的计算机视觉领域,一定会有更多更强的工作,为我们的科研与生活带来更快更好的提升。

参考资料

[1] https://zhuanlan.zhihu.com/p/41691301 [2] https://www.zhihu.com/question/60109389/answer/203099761 [3] https://zhuanlan.zhihu.com/p/31427164 [4] https://zhuanlan.zhihu.com/p/23006190 [5] https://blog.csdn.net/weixin_37763809/article/details/88256828 [6] https://zhuanlan.zhihu.com/p/37505777 [7] https://zhuanlan.zhihu.com/p/77221549 [8] https://www.zhihu.com/question/433702668/answer/1617092684 [9] https://blog.csdn.net/zouxy09/article/details/7929348 [10] https://www.jiqizhixin.com/articles/2020-01-01

成为VIP会员查看完整内容
0
26

相关内容

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

【导读】作为计算机视觉领域的三大国际顶会之一,IEEE国际计算机视觉与模式识别会议CVPR(IEEE Conference on Computer Vision and Pattern Recognition) 每年都会吸引全球领域众多专业人士参与。CVPR 2021将在线举行, 中国科学院院士、中科院自动化所智能感知与计算研究中心主任谭铁牛将出任大会主席(General Chair,GC),上海科技大学的虞晶怡教授将任程序主席(Program Chair,PC)。今年的CVPR有效投稿多达7500篇,一共有1663篇论文被接收,接收率为27%。

为此,专知小编提前为大家整理了五篇CVPR 2021视频理解(Video Understanding)相关论文,让大家先睹为快——长视频学习、指称表达、VideoMoCo、视频预测、自监督视频表示学习

CVPR2021OD、CVPR2021AR

1. PGT: A Progressive Method for Training Models on Long Videos

作者:Bo Pang, Gao Peng, Yizhuo Li, Cewu Lu

摘要:卷积视频模型的计算复杂度比其对应的图像级模型大一个数量级。受计算资源的约束,没有模型或训练方法可以端到端训练长视频序列。目前,主流方法是将原始视频分割成片段,导致片段时间信息流不完整,受自然语言处理长句的启发,我们建议将视频视为满足马尔可夫性质的连续片段,并将其训练为通过逐步扩展信息在时间维度上的整体传播。这种渐进式训练(PGT)方法能够以有限的资源端对端地训练长视频,并确保信息的有效传输。作为一种通用且强大的训练方法,我们通过经验证明了该方法在不同模型和数据集上均具有显着的性能改进。作为说明性示例,我们提出的方法将Chalow上的SlowOnly网络提高了3.7 mAP,在Kinetics 方面提高了1.9 top-1的精度,而参数和计算开销却可以忽略不计。

代码:

https://github.com/BoPang1996/PGT

网址: https://arxiv.org/abs/2103.11313

2. Co-Grounding Networks with Semantic Attention for Referring Expression Comprehension in Videos

作者:Sijie Song, Xudong Lin, Jiaying Liu, Zongming Guo, Shih-Fu Chang

摘要:在本文中,我们解决了在视频中引用了指称表达(Referring Expression)的问题,这个任务由于复杂的表达和场景动态而具有挑战性。与以前的解决方案可以在多个阶段(即跟踪,基于proposal的匹配)解决问题的方法不同,我们从新颖的角度出发使用单阶段框架—co-grounding。我们通过语义注意力学习来提高单帧 grounding 的准确性,并通过联合co-grounding特征学习来提高跨帧 grounding的一致性。语义注意力学习显式地解析具有不同属性的线索,以减少复杂表达中的歧义。co-groundin特征学习通过集成时间相关性来减少由场景动态引起的模糊性,从而增强了视觉特征表示。实验结果证明了我们的框架在video grounding数据集VID和LiOTB上的优越性,可以跨帧生成准确而稳定的结果。我们的模型还适用于引用图像中的指称表达(Referring Expression),这可以通过RefCOCO数据集上的改进性能来说明。

代码: https://sijiesong.github.io/co-grounding

网址: https://arxiv.org/abs/2103.12346

3. VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples

作者:Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, Wei Liu

摘要:MOCO对于无监督的图像表示学习是有效的。在本文中,我们针对无监督视频表示学习提出VideomoCo。给出视频序列作为输入样本,我们从两个视角改善MoCo的时间特征表示。首先,我们介绍一个生成器,以便在时间上删除几个帧。然后学习鉴别器以编码类似的特征表示,无论帧移除如何。通过在训练攻击期间自适应地丢弃不同的帧,我们将该输入样本增强以训练一个时间鲁棒的编码器。其次,在计算对比损耗时,我们使用时间衰减来模拟内存队列中的键(key)衰减。动量编码器在键进入后进行更新,当我们使用当前输入样本进行对比学习时,这些键的表示能力会下降。这种下降通过时间衰减反映出来,以使输入样本进入队列中的最近键。结果,我们使MoCo能够学习视频表示,而无需凭经验设计pretext任务。通过增强编码器的时间鲁棒性并为键的时间衰减建模,我们的VideoMoCo基于对比学习在时间上提高了MoCo。在包括UCF101和HMDB51在内的基准数据集上进行的实验表明,VideoMoCo是最先进的视频表示学习方法。

代码: https://github.com/tinapanpt/VideoMoCo

网址:

https://arxiv.org/abs/2103.05905

4. Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction

作者:Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, Chelsea Finn

摘要:拓展到不同场景的视频预测模型将使智能体(agent)能够通过使用模型规划来执行多种任务。然而,虽然现有的视频预测模型在小型数据集上产生了有希望的结果,但在大型和多样化的数据集上训练时,它们会遭受严重的欠拟合(underfitting)。为了解决这种欠拟合挑战,我们首先观察到训练更大的视频预测模型的能力通常是通过GPU或TPU的内存限制的。同时,深层次的潜在变量模型可以通过捕获未来观测值的多级随机性来产生更高质量的预测,但是这种模型的端到端优化特别困难。我们的主要想法在于,通过对分层自编码器的贪婪和模块化优化可以同时解决内存限制和大规模视频预测的优化挑战。我们介绍贪婪的分层变分自编码器(GHVAES),这是一种通过贪婪训练分层自编码器的每个级别来学习Highfivelity视频预测的方法。GHVAE在四个视频数据集上的预测性能提高了17-55%,在实际机器人任务上的成功率提高了35-40%,并且可以通过简单地添加更多内容来提高性能模块。

代码: https://sites.google.com/view/ghvae

网址: https://arxiv.org/abs/2103.04174

5. Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning

作者:Jinpeng Wang, Yuting Gao, Ke Li, Yiqi Lin, Andy J. Ma, Hao Cheng, Pai Peng, Rongrong Ji, Xing Sun

摘要:通过从数据本身监督,自监督学习表现出了提高深神经网络的视频表示能力的巨大潜力。然而,一些当前的方法倾向于从背景中欺骗,即,预测高度依赖于视频背景而不是运动,使得模型容易受到背景的变化。为了减轻模型依赖背景,我们建议通过添加背景来消除背景影响。也就是说,给定视频,我们随机选择静态帧并将其添加到每个其他帧以构建分散注意力的视频样本。然后我们强制模型拉动分散的视频的特征和原始视频的特征,以便明确地限制模型以抵抗背景影响,更多地关注运动变化。我们将我们的方法命名为Background Erasing (BE)。值得注意的是,我们的方法的实现非常简单,可以很轻松地添加到大多数SOTA方法中。具体而言,在严重bias的数据集UCF101和HMDB51上具有16.4%和19.1%的改善,对较少bias的数据集Diving48改进了14.5%。

网址: https://arxiv.org/abs/2009.05769

成为VIP会员查看完整内容
0
22

图像分割(image segmentation)技术是计算机视觉领域的个重要的研究方向,近些年,图像分割技术迅猛发展,在多个视觉研究领域都有着广泛的应用。本文盘点了近20年来影响力最大的 10 篇论文。

-TOP10- Mask R-CNN 被引频次:1839 作者:Kaiming He,Georgia Gkioxari,Piotr Dollar,Ross Girshick. 发布信息: 2017,16th IEEE International Conference on Computer Vision (ICCV) 论文:https://arxiv.org/abs/1703.06870 代码:https://github.com/facebookresearch/Detectron Mask R-CNN作为非常经典的实例分割(Instance segmentation)算法,在图像分割领域可谓“家喻户晓”。Mask R-CNN不仅在实例分割任务中表现优异,还是一个非常灵活的框架,可以通过增加不同的分支完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种不同的任务。

-TOP9- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 被引频次:1937 作者: Vijay Badrinarayanan,Alex Kendall,Roberto Cipolla 发布信息:2015,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 论文:https://arxiv.org/pdf/1511.00561.pdf 代码:https://github.com/aizawan/segnet SegNet是用于进行像素级别图像分割的全卷积网络。SegNet与FCN的思路较为相似,区别则在于Encoder中Pooling和Decoder的Upsampling使用的技术。Decoder进行上采样的方式是Segnet的亮点之一,SegNet主要用于场景理解应用,需要在进行inference时考虑内存的占用及分割的准确率。同时,Segnet的训练参数较少,可以用SGD进行end-to-end训练。

-TOP8- DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 被引频次:2160 作者: Chen Liang-Chieh,Papandreou George,Kokkinos Iasonas等. 发布信息:2018,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE DeepLabv1:https://arxiv.org/pdf/1412.7062v3.pdf DeepLabv2:https://arxiv.org/pdf/1606.00915.pdf DeepLabv3:https://arxiv.org/pdf/1706.05587.pdf DeepLabv3+:https://arxiv.org/pdf/1802.02611.pdf 代码:https://github.com/tensorflow/models/tree/master/research/deeplab DeepLab系列采用了Dilated/Atrous Convolution的方式扩展感受野,获取更多的上下文信息,避免了DCNN中重复最大池化和下采样带来的分辨率下降问题。2018年,Chen等人发布Deeplabv3+,使用编码器-解码器架构。DeepLabv3+在2012年pascal VOC挑战赛中获得89.0%的mIoU分数。

DeepLabv3+

-TOP7- Contour Detection and Hierarchical Image Segmentation 被引频次:2231 作者: Arbelaez Pablo,Maire Michael,Fowlkes Charless等. 发布信息:2011,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 论文和代码:https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html Contour Detection and Hierarchical Image Segmentation通过检测轮廓来进行分割,以解决不加交互的图像分割问题,是分割领域中非常重要的一篇文章,后续很多边缘检测算法都利用了该模型。

-TOP6- Efficient graph-based image segmentation 被引频次:3302 作者:Felzenszwalb PF,Huttenlocher DP 发布信息:2004,INTERNATIONAL JOURNAL OF COMPUTER VISION 论文和代码:http://cs.brown.edu/people/pfelzens/segment/ Graph-Based Segmentation 是经典的图像分割算法,作者Felzenszwalb也是提出DPM算法的大牛。该算法是基于图的贪心聚类算法,实现简单。目前虽然直接用其做分割的较少,但许多算法都用它作为基石。

-TOP5- SLIC Superpixels Compared to State-of-the-Art Superpixel Methods 被引频次:4168 作者: Radhakrishna Achanta,Appu Shaji,Kevin Smith,Aurelien Lucchi,Pascal Fua,Sabine Susstrunk. 发布信息:2012,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 论文和代码:https://ivrlwww.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html SLIC 算法将K-means 算法用于超像素聚类,是一种思想简单、实现方便的算法,SLIC算法能生成紧凑、近似均匀的超像素,在运算速度,物体轮廓保持、超像素形状方面具有较高的综合评价,比较符合人们期望的分割效果。

-TOP4- U-Net: Convolutional Networks for Biomedical Image Segmentation 被引频次:6920 作者: Ronneberger Olaf,Fischer Philipp,Brox Thomas 发布信息:2015,18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 代码:https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ U-Net是一种基于深度学习的图像语义分割方法,在医学图像分割领域表现尤为优异。它基于FCNs做出改进,相较于FCN多尺度信息更加丰富,同时适合超大图像分割。作者采用数据增强(data augmentation),通过使用在粗糙的3*3点阵上的随机取代向量来生成平缓的变形,解决了可获得的训练数据很少的问题。并使用加权损失(weighted loss)以解决对于同一类的连接的目标分割。

-TOP3- Mean shift: A robust approach toward feature space analysis 被引频次:6996 作者: Comaniciu D,Meer P 发布信息:2002,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Meanshift是基于像素聚类的代表方法之一,是一种特征空间分析方法。密度估计(Density Estimation) 和mode 搜索是Meanshift的两个核心点。对于图像数据,其分布无固定模式可循,所以密度估计必须用非参数估计,选用的是具有平滑效果的核密度估计(Kernel density estimation,KDE)。Meanshift 算法的稳定性、鲁棒性较好,有着广泛的应用。但是分割时所包含的语义信息较少,分割效果不够理想,无法有效地控制超像素的数量,且运行速度较慢,不适用于实时处理任务。 -TOP2- Normalized cuts and image segmentation 被引频次:8056 作者:Shi JB,Malik J 发布信息:2000,IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 论文:https://ieeexplore.ieee.org/abstract/document/1000236 NormalizedCut是基于图论的分割方法代表之一,与以往利用聚类的方法相比,更加专注于全局解的情况,并且根据图像的亮度,颜色,纹理进行划分。

-Top1- Fully Convolutional Networks for Semantic Segmentation 被引频次:8170 作者: Long Jonathan,Shelhamer Evan,Darrell Trevor 发布信息:2015,IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 代码:https://github.com/shelhamer/fcn.berkeleyvision.org FCN是图像分割领域里程碑式论文。作为语义分割的开山之作,FCN是当之无愧的TOP1。它提出了全卷积网络(FCN)的概念,针对语义分割训练了一个端到端,点对点的网络,它包含了三个CNN核心思想: (1)不含全连接层(fc)的全卷积(fully conv)网络。可适应任意尺寸输入。 (2)增大数据尺寸的反卷积(deconv)层。能够输出精细的结果。 (3)结合不同深度层结果的跳级(skip)结构。同时确保鲁棒性和精确性。

参考 [1]FCN的学习及理解(Fully Convolutional Networks for Semantic Segmentation),CSDN [2]mean shift 图像分割 (一),CSDN [3]https://zhuanlan.zhihu.com/p/49512872 [4]图像分割—基于图的图像分割(Graph-Based Image Segmentation),CSDN [5]https://www.cnblogs.com/fourmi/p/9785377.html

成为VIP会员查看完整内容
0
54
小贴士
相关VIP内容
专知会员服务
48+阅读 · 5月8日
专知会员服务
38+阅读 · 2020年11月3日
专知会员服务
54+阅读 · 2020年9月27日
专知会员服务
87+阅读 · 2020年3月12日
专知会员服务
25+阅读 · 2020年1月10日
BERT进展2019四篇必读论文
专知会员服务
47+阅读 · 2020年1月2日
相关资讯
相关论文
Enze Xie,Wenhai Wang,Mingyu Ding,Ruimao Zhang,Ping Luo
0+阅读 · 5月5日
Xiangtan Lin,Pengzhen Ren,Yun Xiao,Xiaojun Chang,Alex Hauptmann
0+阅读 · 5月1日
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi,Sungroh Yoon
3+阅读 · 2020年7月13日
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
19+阅读 · 2019年9月22日
FocusNet: An attention-based Fully Convolutional Network for Medical Image Segmentation
Chaitanya Kaul,Suresh Manandhar,Nick Pears
4+阅读 · 2019年2月8日
Jose Dolz,Karthik Gopinath,Jing Yuan,Herve Lombaert,Christian Desrosiers,Ismail Ben Ayed
6+阅读 · 2018年4月9日
Holger R. Roth,Hirohisa Oda,Xiangrong Zhou,Natsuki Shimizu,Ying Yang,Yuichiro Hayashi,Masahiro Oda,Michitaka Fujiwara,Kazunari Misawa,Kensaku Mori
9+阅读 · 2018年3月14日
Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick
7+阅读 · 2018年1月24日
Bernardino Romera-Paredes,Philip H. S. Torr
5+阅读 · 2016年10月24日
Top