To safely and rationally participate in dense and heterogeneous traffic, autonomous vehicles require to sufficiently analyze the motion patterns of surrounding traffic-agents and accurately predict their future trajectories. This is challenging because the trajectories of traffic-agents are not only influenced by the traffic-agents themselves but also by spatial interaction with each other. Previous methods usually rely on the sequential step-by-step processing of Long Short-Term Memory networks (LSTMs) and merely extract the interactions between spatial neighbors for single type traffic-agents. We propose the Spatio-Temporal Transformer Networks (S2TNet), which models the spatio-temporal interactions by spatio-temporal Transformer and deals with the temporel sequences by temporal Transformer. We input additional category, shape and heading information into our networks to handle the heterogeneity of traffic-agents. The proposed methods outperforms state-of-the-art methods on ApolloScape Trajectory dataset by more than 7\% on both the weighted sum of Average and Final Displacement Error. Our code is available at https://github.com/chenghuang66/s2tnet.
翻译:为了安全和合理地参与密集和多样化的交通,自治车辆需要充分分析周围交通剂的移动模式,并准确预测其未来轨迹。这是具有挑战性的,因为交通剂的轨迹不仅受到交通剂本身的影响,而且受到彼此之间的空间互动的影响。以前的方法通常依靠长期短期内存网络(LSTMs)的连续逐步处理,而只是为单一类型的交通剂提取空间邻居之间的相互作用。我们提议采用Spatio-Toporal变换器网络(S2TNet),用spatio-时空变换器来模拟螺旋-时空相互作用,并通过时间变换器与电动序列进行交易。我们把更多的类别、形状和线索输入到我们的网络中,以便处理交通剂的异质。拟议的方法比阿波罗斯卡卡普-轨迹数据设置的状态-艺术方法要远超过7 ⁇,用来模拟平均和最终流离失所错误的加权组合。我们的代码可以在 httpsnet://giuthh2。我们的代码可在 https.