The purpose of this work is to advance fair and consistent comparisons of dose prediction methods for knowledge-based planning (KBP) in radiation therapy research. We hosted OpenKBP, a 2020 AAPM Grand Challenge, and challenged participants to develop the best method for predicting the dose of contoured CT images. The models were evaluated according to two separate scores: (1) dose score, which evaluates the full 3D dose distributions, and (2) dose-volume histogram (DVH) score, which evaluates a set DVH metrics. Participants were given the data of 340 patients who were treated for head-and-neck cancer with radiation therapy. The data was partitioned into training (n=200), validation (n=40), and testing (n=100) datasets. All participants performed training and validation with the corresponding datasets during the validation phase of the Challenge, and we ranked the models in the testing phase based on out-of-sample performance. The Challenge attracted 195 participants from 28 countries, and 73 of those participants formed 44 teams in the validation phase, which received a total of 1750 submissions. The testing phase garnered submissions from 28 teams. On average, over the course of the validation phase, participants improved the dose and DVH scores of their models by a factor of 2.7 and 5.7, respectively. In the testing phase one model achieved significantly better dose and DVH score than the runner-up models. Lastly, many of the top performing teams reported using generalizable techniques (e.g., ensembles) to achieve higher performance than their competition. This is the first competition for knowledge-based planning research, and it helped launch the first platform for comparing KBP prediction methods fairly and consistently. The OpenKBP datasets are available publicly to help benchmark future KBP research, which has also democratized KBP research by making it accessible to everyone.


翻译:这项工作的目的是促进在辐射治疗研究方面对基于知识的规划(KBP)的剂量预测方法进行公平和一致的比较;我们主办了2020年AAPM Grader Front的OpenKBP,这是2020年AAPM Greater的OpenKBP, 并对参与者提出挑战,要他们制定最佳的预测方法,以预测CT图像的剂量剂量。模型是按照两个不同的评分进行评估的:(1) 剂量分,用来评价3D剂量的全分,(2) 剂量量直方图(DVH)评分,用来评价一套DV的计量标准。 挑战吸引了来自28个国家的195名参与者,而KBBT中的73名参与者在鉴定阶段组成了44个小组,通过辐射治疗治疗治疗治疗头颈癌,数据被分分为培训(n=200),验证(n=40)和测试(n=100) 数据集。所有参与者在“挑战”的验证阶段进行了培训和验证,我们在测试测试阶段根据从3D剂量的全套模型的全方位,我们根据可理解的模型评分评分,模型评为模型评分。 KKKBBBT的195和这些参与者在验证阶段中首次评分中首次评分中,在帮助了44个小组中还取得了整个1750次评分。

0
下载
关闭预览

相关内容

【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
24+阅读 · 2020年4月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
VIP会员
相关VIP内容
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
24+阅读 · 2020年4月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Top
微信扫码咨询专知VIP会员