Generating diverse and comprehensive interacting agents to evaluate the decision-making modules is essential for the safe and robust planning of autonomous vehicles~(AV). Due to efficiency and safety concerns, most researchers choose to train interactive adversary~(competitive or weakly competitive) agents in simulators and generate test cases to interact with evaluated AVs. However, most existing methods fail to provide both natural and critical interaction behaviors in various traffic scenarios. To tackle this problem, we propose a styled generative model RouteGAN that generates diverse interactions by controlling the vehicles separately with desired styles. By altering its style coefficients, the model can generate trajectories with different safety levels serve as an online planner. Experiments show that our model can generate diverse interactions in various scenarios. We evaluate different planners with our model by testing their collision rate in interaction with RouteGAN planners of multiple critical levels.


翻译:产生多种和全面的互动代理来评价决策模块,对于安全、稳健地规划自治车辆(AV)至关重要。由于效率和安全考虑,大多数研究人员选择在模拟器中培训互动敌(有竞争力或竞争力弱的)代理,并生成测试案例,以便与经评估的AV互动。然而,大多数现有方法未能在各种交通情景中提供自然和关键的互动行为。为解决这一问题,我们提议了典型的基因模型RUBGAN,通过以理想的风格分别控制车辆,产生多种互动。通过改变其风格系数,该模型可以产生具有不同安全等级的轨迹,作为在线规划者。实验表明,我们的模型可以在不同情景中产生不同互动。我们通过与多关键级别的RUPGAN规划者互动测试不同模型的碰撞率,从而评估不同模型与模型的碰撞率。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
5+阅读 · 2018年5月1日
Top
微信扫码咨询专知VIP会员