A new type of moving average is developed. Whereas a regular moving average (e.g. of price) has a built-in internal time scale (time-window, exponential weight, etc.), the moving average developed in this paper has the weight as the product of a polynomial by window factor. The polynomial is the square of a wavefunction obtained from an eigenproblem corresponding to other observable (e.g. execution flow I=dV/dt , the number of shares traded per unit time). This allows to obtain an immediate "switch" without lagging typical for regular moving average.
翻译:开发了一种新的移动平均数。 正常移动平均数( 如价格) 具有内在的内部时间尺度( 时间窗口、 指数重量等), 本文中开发的移动平均数具有按窗口因子生成的多数值的重量。 多数值是与其他可观测到的( 如执行流I=dV/dt, 交易的股位数) 相对应的元数的波形方形。 这样可以取得即时“ 切换 ”, 而正常移动平均数通常不会落后 。