In this paper, we study finitary 1-truncated higher inductive types (HITs) in homotopy type theory. We start by showing that all these types can be constructed from the groupoid quotient. We define an internal notion of signatures for HITs, and for each signature, we construct a bicategory of algebras in 1-types and in groupoids. We continue by proving initial algebra semantics for our signatures. After that, we show that the groupoid quotient induces a biadjunction between the bicategories of algebras in 1-types and in groupoids. Then we construct a biinitial object in the bicategory of algebras in groupoids, which gives the desired algebra. From all this, we conclude that all finitary 1-truncated HITs can be constructed from the groupoid quotient. We present several examples of HITs which are definable using our notion of signature. In particular, we show that each signature gives rise to a HIT corresponding to the freely generated algebraic structure over it. We also start the development of universal algebra in 1-types. We show that the bicategory of algebras has PIE limits, i.e. products, inserters and equifiers, and we prove a version of the first isomorphism theorem for 1-types. Finally, we give an alternative characterization of the foundamental groups of some HITs, exploiting our construction of HITs via the groupoid quotient. All the results are formalized over the UniMath library of univalent mathematics in Coq.
翻译:在本文中, 我们用同质类型理论来研究直线 1 直线高缩类型( HITs ) 。 我们首先显示所有这些类型都可以从组数商数中构建。 我们定义了 HITs 的签名内部概念, 对于每个签名, 我们用1 型和组数来构建一个双类代数。 我们继续以初始代数来验证我们的签名。 之后, 我们展示了组数数数在 1 型代数和群数的两类代数之间产生一种数学比对。 然后我们在组数的双类数中构建了一个双向对象。 我们从中得出了一个预想的代数。 我们从中得出结论, 所有的直径数 1 型代数 代数都可以从组数中构建。 我们用我们的签名概念来展示一些可以解析的 HITs 。 我们发现, 每个代数在1 类代数的代数的代数中, 我们发现每个代数会生成一个直径直径的代数, 直径直径, 直径的直径直径直径直径, 直径直径的直径直径直径直径, 直径直径直到直径直到直到直径直到直的直到直至直的直的直的直的直的直的直的代数直的代数。