Future NASA lander missions to icy moons will require completely automated, accurate, and data efficient calibration methods for the robot manipulator arms that sample icy terrains in the lander's vicinity. To support this need, this paper presents a Gaussian Process (GP) approach to the classical manipulator kinematic calibration process. Instead of identifying a corrected set of Denavit-Hartenberg kinematic parameters, a set of GPs models the residual kinematic error of the arm over the workspace. More importantly, this modeling framework allows a Gaussian Process Upper Confident Bound (GP-UCB) algorithm to efficiently and adaptively select the calibration's measurement points so as to minimize the number of experiments, and therefore minimize the time needed for recalibration. The method is demonstrated in simulation on a simple 2-DOF arm, a 6 DOF arm whose geometry is a candidate for a future NASA mission, and a 7 DOF Barrett WAM arm.
翻译:未来美国航天局对冰土月球的着陆飞行任务将需要对在着陆器附近取样冰冷地形的机器人操纵臂进行完全自动化、准确和数据高效的校准方法。 为支持这一需要,本文件介绍了古典操纵机动校准过程的高斯进程(GP)方法。 这种方法不是确定一套经过校正的德纳维特- 哈滕贝格运动参数,而是一套GPs模型,即工作空间上手臂的残余运动错误。 更重要的是,这一模型框架允许高斯进程高稳态超声波算法(GP- UCB)高效和适应性地选择校准测量点,以尽量减少实验数量,从而最大限度地减少校准所需的时间。 该方法在简单的2DOF臂模拟中演示,6DF臂,其几何是未来美国航天局飞行任务的候选位置,还有7DF Barret WAM臂。</s>