Background: Even though data visualizations (and underlying data) almost always contain uncertainty, it remains complex to communicate and interpret uncertainty representations. Consequently, uncertainty visualizations for non-expert audiences are rare. Objective: our aim is to rigorously define and evaluate the novel use of visual entropy as a measure of shape that allows us to construct an ordered scale of glyphs for use in representing both uncertainty and value in 2D and 3D environments. Method: We use sample entropy as a numerical measure of visual entropy to construct a set of glyphs using R and Blender which vary in their complexity. Results: an exact binomial analysis of a pairwise comparison of the glyphs shows a majority of participants (n = 87) ordered each glyph as predicted by the visual entropy score with large effect size (Cohen's g > 0.25). We also evaluate whether the glyphs effectively represent uncertainty using a signal detection method in a search task. Participants (n = 15) were able to find glyphs representing uncertainty with high sensitivity and low error rates. Conclusion: visual entropy is a successful novel approach to representing ordered data and provides a channel that can allow the uncertainty of a measure to be presented alongside its mean value.
翻译:尽管数据可视化(和基础数据)几乎总是包含不确定性,但传播和解释不确定性的表示方式仍然很复杂。因此,非专家受众的不确定性可视化非常罕见。目标:我们的目标是严格界定和评价视觉昆虫作为一种形状测量尺度的新颖使用,以便我们可以在 2D 和 3D 环境中构建一个定序比例的晶体以代表不确定性和价值。方法:我们使用样本昆虫作为视觉昆虫的数值测量方法,用R 和 Blender 来构建一组具有不同复杂性的晶体。结果:对各种晶体的配对比较进行精确的二元分析,显示大多数参与者(n= 87) 按视觉昆虫大尺寸的直观分数(Cohen's g > 0.25) 所预测的每一种晶体。我们还评估这些晶体是否在搜索任务中使用信号探测方法有效代表不确定性。参与者(n= 15) 能够发现具有高度敏感性和低误差率的不确定性的晶体体。结论:视觉昆虫能够同时提供一种成功的数据测量方法,它能够同时提供一种成功的数据。