Large language models (LLMs) have exhibited a strong promise in automatically generating executable code from natural language descriptions, particularly with interactive features that allow users to engage in the code-generation process by instructing the LLM with iterative feedback. However, existing interaction paradigms often assume that users have expert knowledge to debug source code and are not optimized for non-professional programmers' use. This raises challenges in making interactive code generation more accessible for individuals with varying levels of programming expertise. To tackle these challenges, we present IntelliExplain, which offers a novel human-LLM interaction paradigm to enhance non-professional programmers' experience by enabling them to interact with source code via natural language explanations. Users interact with IntelliExplain by providing natural language corrective feedback on errors they identify from the explanations. Feedback is used by the system to revise the code, until the user is satisfied with explanations by the system of the code. Our user study demonstrates that users with IntelliExplain achieve a significantly higher success rate 11.6% and 25.3% better than with vanilla GPT-3.5, while also requiring 39.0% and 15.6% less time in Text-to-SQL and Python code generation tasks, respectively.
翻译:暂无翻译