It is shown that for deep neural networks, a single wide layer of width $N+1$ ($N$ being the number of training samples) suffices to prove the connectivity of sublevel sets of the training loss function. In the two-layer setting, the same property may not hold even if one has just one neuron less (i.e. width $N$ can lead to disconnected sublevel sets).
翻译:事实表明,对于深层神经网络而言,单宽层宽度为N+1美元(培训样本数量为N+1美元)足以证明培训损失功能下层各层的连通性;在两层环境下,即使一个人只有少一个神经元(即宽度为N美元可导致分层断开),同样财产也不得持有(即宽度为N美元可导致分层断开)。