Structured Illumination Microscopy is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D SIM image stacks with twice the axial resolution attainable through conventional SIM reconstructions. We further evaluate our method for robustness to noise & generalisability to varying observed specimens, and discuss potential adaptions of the method to further improvements in resolution.
翻译:结构化光化显微镜是一种广泛的方法,用来对比常规光学显微镜的分解限度小的活生物结构和固定生物结构进行图像成像。我们利用最近通过深层学习模型在图像升级方面取得的进步,展示了一种重建3D SIM图像堆的方法,通过常规的SIM重建可以达到的轴分辨率的两倍。我们进一步评估了我们对噪音的稳健性和对不同观测标本的可普及性的方法,并讨论了该方法在进一步改进分辨率方面的潜在适应性。