This work presents a novel RGB-D SLAM approach to simultaneously segment, track and reconstruct the static background and large dynamic rigid objects that can occlude major portions of the camera view. Previous approaches treat dynamic parts of a scene as outliers and are thus limited to a small amount of changes in the scene, or rely on prior information for all objects in the scene to enable robust camera tracking. Here, we propose to treat all dynamic parts as one rigid body and simultaneously segment and track both static and dynamic components. We, therefore, enable simultaneous localisation and reconstruction of both the static background and rigid dynamic components in environments where dynamic objects cause large occlusion. We evaluate our approach on multiple challenging scenes with large dynamic occlusion. The evaluation demonstrates that our approach achieves better motion segmentation, localisation and mapping without requiring prior knowledge of the dynamic object's shape and appearance.
翻译:这项工作提出了一种新型的RGB-D SLAM 方法,用于同时段、跟踪和重建静态背景和大型动态僵硬天体,这些天体可以覆盖摄像视图的主要部分。 以往的方法将场景的动态部分作为外源处理,因此限于场景的少量变化,或者依靠现场所有天体的先前信息进行有力的相机跟踪。 我们在这里建议将所有动态部分作为一个僵硬的体体,同时进行部分,并跟踪静态和动态组成部分。 因此,我们在动态天体造成大规模隐蔽的环境下,可以同时进行静态背景和僵硬动态天体组成部分的定位和重建。 我们用大规模动态隐蔽来评估我们对于多重挑战场景的方法。 评估表明,我们的方法在不需要事先了解动态天体的形状和外观的情况下,实现了更好的运动分割、定位和绘图。