Heterogeneous graphs provide a compact, efficient, and scalable way to model data involving multiple disparate modalities. This makes modeling audiovisual data using heterogeneous graphs an attractive option. However, graph structure does not appear naturally in audiovisual data. Graphs for audiovisual data are constructed manually which is both difficult and sub-optimal. In this work, we address this problem by (i) proposing a parametric graph construction strategy for the intra-modal edges, and (ii) learning the crossmodal edges. To this end, we develop a new model, heterogeneous graph crossmodal network (HGCN) that learns the crossmodal edges. Our proposed model can adapt to various spatial and temporal scales owing to its parametric construction, while the learnable crossmodal edges effectively connect the relevant nodes across modalities. Experiments on a large benchmark dataset (AudioSet) show that our model is state-of-the-art (0.53 mean average precision), outperforming transformer-based models and other graph-based models.


翻译:异质图形提供了一种精密、高效和可缩放的方法来模拟涉及多种不同模式的数据。 这使得使用多元图形的视听数据模型是一个有吸引力的选择。 但是, 图形结构并不自然地出现在视听数据中。 视听数据的图表是手工制作的, 既困难又不理想。 在这项工作中, 我们通过( 一) 提议一个用于内部模式边缘的参数图形构建战略, 以及(二) 学习跨模式边缘来解决这个问题。 为此, 我们开发了一种新的模型, 多种图形跨模式网络( HGCN), 学习跨模式的边缘。 我们提议的模型可以由于模拟结构而适应不同的空间和时间尺度, 而可学习的跨模式边缘则有效地连接了各种模式的相关节点。 在大型基准数据集( AudioSet) 上进行的实验显示, 我们的模型是最新( 0. 53 平均精确度 ) 、 超值的变压器模型和其他基于图表的模型。</s>

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月10日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员