Aerial robotic systems has raised emerging interests among researchers. In this paper, a novel aerial manipulation system: a flying continuum robotic manipulator (AeCoM) is first proposed, to the best of authors' knowledge. In the perspective of design, a lightweight tendon-driven continuum robotic arm (in 3D-printed material) is delicately coupled with a quadrotor. To address the problem of kinematics inaccuracy due to different tip loading, we introduce an attitude sensor (IMU) to assist in PCC (Piecewise Constant Curvature) configuration. To deal with frequent and complex aerial manipulation tasks, we deploy a tension-based closed-loop control method, which is used to avoid tendon-slacking in manipulating the shape of the continuum arm. Distinct from the conventional aerial rigid manipulators, the proposed system achieve more relative payload capability and motion dexterity. The system's experimental results validate the performance of tendon-slacking avoidance, kinematics accuracy with different tip loading, and tip positioning accuracy for aerial grasping. The comparison with conventional aerial manipulators, indicates that the proposed manipulator has better manipulation performance and more potential applications in the cluttered environment.
翻译:空中机器人系统引起了研究人员的新兴兴趣。 在本文中,首先提出了一个新型的空中操纵系统(AECOM ) : 一个飞行连续机器人操纵器(AECOM ) 。 在设计方面,一个轻量偏重驱动的连续机器人臂(3D印刷材料)与一个二次钻探器微妙地结合。为了解决由于不同倾斜负荷造成的运动不精确问题,我们引入了一个姿态传感器(IMU ) 来协助PCC (Piecewith Constand Curvature) 配置。为了处理频繁和复杂的空中操纵任务,我们采用了一种基于紧张的闭环控制方法,用于避免在操纵连续臂形状时出现偏差。 与传统的空中固定操纵器不同, 拟议的系统具有更相对的载荷能力和运动的伸缩性。 该系统的实验结果验证了中偏移的避免性、 运动准确性以及不同微缩装载的精确性能, 以及空中控制器的定位精确性能。 与常规航空操纵器的对比表明, 更接近式的操作环境有更好的操作能力。