We introduce Disease Informed Neural Networks (DINNs) -- neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate). Here, we used DINNs to identify the dynamics of 11 highly infectious and deadly diseases. These systems vary in their complexity, ranging from 3D to 9D ODEs, and from a few parameters to over a dozen. The diseases include COVID, Anthrax, HIV, Zika, Smallpox, Tuberculosis, Pneumonia, Ebola, Dengue, Polio, and Measles. Our contribution is three fold. First, we extend the recent physics informed neural networks (PINNs) approach to a large number of infectious diseases. Second, we perform an extensive analysis of the capabilities and shortcomings of PINNs on diseases. Lastly, we show the ease at which one can use DINN to effectively learn COVID's spread dynamics and forecast its progression a month into the future from real-life data. Code and data can be found here: https://github.com/Shaier/DINN.


翻译:我们引入了疾病信息神经网络(DINNS) -- -- 能够学习疾病传播方式、预测其发展过程和找到其独特参数(例如死亡率)的神经网络。在这里,我们使用DINN来识别11种高度传染和致命疾病的动态。这些系统的复杂性各不相同,从3D到9DODE,从几个参数到十多个参数不等。这些疾病包括COVID、炭疽、HIV、Zika、小天花、肺结核、肺炎、埃博拉、登革热、脊髓灰质炎和麻疹。我们的贡献是三倍。首先,我们将最近的物理知情神经网络(PINNIS)方法扩大到大量传染病。第二,我们对PINN在疾病方面的能力和缺陷进行了广泛的分析。最后,我们展示了利用DINN来有效学习COVID传播动态并预测其从真实数据到未来一个月的演变过程。这里可以找到代码和数据: https://github.com/Shaier/DIN。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
17+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
30+阅读 · 2021年7月7日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
17+阅读 · 2019年3月28日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2015年11月29日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
17+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2021年12月3日
Arxiv
30+阅读 · 2021年7月7日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
17+阅读 · 2019年3月28日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2015年11月29日
Top
微信扫码咨询专知VIP会员