We introduce Disease Informed Neural Networks (DINNs) -- neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate). Here, we used DINNs to identify the dynamics of 11 highly infectious and deadly diseases. These systems vary in their complexity, ranging from 3D to 9D ODEs, and from a few parameters to over a dozen. The diseases include COVID, Anthrax, HIV, Zika, Smallpox, Tuberculosis, Pneumonia, Ebola, Dengue, Polio, and Measles. Our contribution is three fold. First, we extend the recent physics informed neural networks (PINNs) approach to a large number of infectious diseases. Second, we perform an extensive analysis of the capabilities and shortcomings of PINNs on diseases. Lastly, we show the ease at which one can use DINN to effectively learn COVID's spread dynamics and forecast its progression a month into the future from real-life data. Code and data can be found here: https://github.com/Shaier/DINN.
翻译:我们引入了疾病信息神经网络(DINNS) -- -- 能够学习疾病传播方式、预测其发展过程和找到其独特参数(例如死亡率)的神经网络。在这里,我们使用DINN来识别11种高度传染和致命疾病的动态。这些系统的复杂性各不相同,从3D到9DODE,从几个参数到十多个参数不等。这些疾病包括COVID、炭疽、HIV、Zika、小天花、肺结核、肺炎、埃博拉、登革热、脊髓灰质炎和麻疹。我们的贡献是三倍。首先,我们将最近的物理知情神经网络(PINNIS)方法扩大到大量传染病。第二,我们对PINN在疾病方面的能力和缺陷进行了广泛的分析。最后,我们展示了利用DINN来有效学习COVID传播动态并预测其从真实数据到未来一个月的演变过程。这里可以找到代码和数据: https://github.com/Shaier/DIN。