Neurons in the brain communicate information via punctual events called spikes. The timing of spikes is thought to carry rich information, but it is not clear how to leverage this in digital systems. We demonstrate that event-based encoding is efficient for audio compression. To build this event-based representation we use a deep binary auto-encoder, and under high sparsity pressure, the model enters a regime where the binary event matrix is stored more efficiently with sparse matrix storage algorithms. We test this on the large MAESTRO dataset of piano recordings against vector quantized auto-encoders. Not only does our "Spiking Music compression" algorithm achieve a competitive compression/reconstruction trade-off, but selectivity and synchrony between encoded events and piano key strikes emerge without supervision in the sparse regime.
翻译:暂无翻译