Gradient descent ascent (GDA), the simplest single-loop algorithm for nonconvex minimax optimization, is widely used in practical applications such as generative adversarial networks (GANs) and adversarial training. Albeit its desirable simplicity, recent work shows inferior convergence rates of GDA in theory even assuming strong concavity of the objective on one side. This paper establishes new convergence results for two alternative single-loop algorithms -- alternating GDA and smoothed GDA -- under the mild assumption that the objective satisfies the Polyak-Lojasiewicz (PL) condition about one variable. We prove that, to find an $\epsilon$-stationary point, (i) alternating GDA and its stochastic variant (without mini batch) respectively require $O(\kappa^{2} \epsilon^{-2})$ and $O(\kappa^{4} \epsilon^{-4})$ iterations, while (ii) smoothed GDA and its stochastic variant (without mini batch) respectively require $O(\kappa \epsilon^{-2})$ and $O(\kappa^{2} \epsilon^{-4})$ iterations. The latter greatly improves over the vanilla GDA and gives the hitherto best known complexity results among single-loop algorithms under similar settings. We further showcase the empirical efficiency of these algorithms in training GANs and robust nonlinear regression.


翻译:GDA是非Convex微型最大优化的最简单的单环算法(GDA),在基因对抗网络(GANs)和对抗性培训等实际应用中广泛使用。尽管它比较简单,但最近的工作显示GDA在理论上的趋同率较低,即使假设目标具有很强的混杂性,理论上也假定GDA的趋同率较高。本文为两种替代的单环算法(交替GDA和平滑的GDA)确立了新的趋同结果,其假设是,目标满足了Polyak-Lojasiewicz(PL)关于一个变数的变数。我们证明,为了找到一个eepslonal-alate staffergy(GADA)及其变数(没有小批量)的固定点,(交替的)GDA及其变数(没有小批)分别需要$O(kapa) 2} 和 $(kapappaqal_) lax Vanqal_qal train train) 和(不小批)这些变数的变数(O\\qal_)分别需要O\\\qualisal_qual_qual_qual_qual_qal_Gqal_qual_) lax laxxxxx pral) pralisal) pralisalisalisalmax pral_这些变数,这些变数,这些变数。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员