We consider the problem of in-order packet transmission over a cascade of packet-erasure links with acknowledgment (ACK) signals, interconnected by relays. We treat first the case of transmitting a single packet, in which ACKs are unnecessary, over links with independent identically distributed erasures. For this case, we derive tight upper and lower bounds on the probability of arrive failure within an allowed end-to-end communication delay over a given number of links. When the number of links is commensurate with the allowed delay, we determine the maximal ratio between the two -- coined information velocity -- for which the arrive-failure probability decays to zero; we further derive bounds on the arrive-failure probability when the ratio is below the information velocity, determine the exponential arrive-failure decay rate, and extend the treatment to links with different erasure probabilities. We then elevate all these results for a stream of packets with independent geometrically distributed interarrival times, and prove that the information velocity and the exponential decay rate remain the same for any stationary ergodic arrival process and for deterministic interarrival times. We demonstrate the significance of the derived fundamental limits -- the information velocity and the arrive-failure exponential decay rate -- by comparing them to simulation results.
翻译:我们考虑的是用一个包封封锁链连接确认(ACK)信号,由中继器连接连接的分包封装包传输的问题。我们首先处理的是发送一个单包(在其中,ACC是不必要的)的情况,然后处理的是与独立分布完全相同的分批的分包。对于这个案例,我们从一个允许的端到端通信延迟范围内,从抵达概率的分包中得出严格的上下界限。当链接的数量与允许的延迟相对应时,我们确定两个 -- -- 即自动信息速度 -- -- 之间的最大比率 -- 信息速度 -- -- 到达概率降至零;当比例低于信息速度时,我们进一步从到货概率概率的误差概率上提取误差的界限,确定指数到差衰减率,并将治疗范围扩大到与不同分期通信概率的联系。然后,我们将所有这些结果提升为一流的包,以独立的几何分布的间抵达时间相对,并证明信息速度和指数衰败率率对于任何定位的抵达过程和任何定态递递归进程而言,我们进一步得出了抵达概率速度的速率。