The shortest path problem in graphs is a cornerstone for both theory and applications. Existing work accounts for edge weight access time, but generally ignores edge weight computation time. In this paper we present a generalized framework for weighted directed graphs, where each edge cost can be dynamically estimated by multiple estimators, that offer different cost bounds and run-times. This raises several generalized shortest path problems, that optimize different aspects of path cost while requiring guarantees on cost uncertainty, providing a better basis for modeling realistic problems. We present complete, anytime algorithms for solving these problems, and provide guarantees on the solution quality.
翻译:图表中最短的路径问题是理论和应用的基石。 现有工作记录了边缘权重存取时间,但通常忽略了边缘权重计算时间。 在本文中,我们为加权定向图表提出了一个通用框架,其中每种边际成本都可以由多个估计者动态估算,提供不同的成本界限和运行时间。 这就引起了几个普遍最短路径问题,即优化路径成本的不同方面,同时要求保证成本不确定性,为模拟现实问题提供更好的基础。 我们提出了解决这些问题的完整、随时的算法,并为解决方案的质量提供了保障。