In this paper, we study the contextual dynamic pricing problem where the market value of a product is linear in its observed features plus some market noise. Products are sold one at a time, and only a binary response indicating success or failure of a sale is observed. Our model setting is similar to Javanmard and Nazerzadeh [2019] except that we expand the demand curve to a semiparametric model and need to learn dynamically both parametric and nonparametric components. We propose a dynamic statistical learning and decision-making policy that combines semiparametric estimation from a generalized linear model with an unknown link and online decision-making to minimize regret (maximize revenue). Under mild conditions, we show that for a market noise c.d.f. $F(\cdot)$ with $m$-th order derivative ($m\geq 2$), our policy achieves a regret upper bound of $\tilde{O}_{d}(T^{\frac{2m+1}{4m-1}})$, where $T$ is time horizon and $\tilde{O}_{d}$ is the order that hides logarithmic terms and the dimensionality of feature $d$. The upper bound is further reduced to $\tilde{O}_{d}(\sqrt{T})$ if $F$ is super smooth whose Fourier transform decays exponentially. In terms of dependence on the horizon $T$, these upper bounds are close to $\Omega(\sqrt{T})$, the lower bound where $F$ belongs to a parametric class. We further generalize these results to the case with dynamically dependent product features under the strong mixing condition.
翻译:在本文中,我们研究了一种产品市场价值在所观察到的特征中线性值{ 以及某些市场噪音的上下文动态定价问题。 产品一次被出售一次, 并且只看到表明销售成功或失败的二进制反应。 我们的模型设置类似于 Javanmard 和 Nazerzadeh [2019] 。 我们的模型设置类似于 Javanmard 和 Nazerzadeh [2019], 但我们将需求曲线扩展为半参数模型, 并且需要动态地同时学习参数和非参数性成分。 我们提出一个动态的统计学习和决策政策, 将一个具有未知链接的通用线性模型和在线决策的半参数估算结合起来, 以尽量减少遗憾( 最大程度) 。 在温度 c. d. f. f (cd) 中, 美元( c) 美元( 美元) 美元( 美元) 美元( 美元) 类中, 美元( 美元) 美元( 美元( 美元) 美元( 美元) 类( = 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) ( 美元) 美元) 的上值( 美元) 底值) 底值) 值) 值) 的内, 我们的内, 我们的基值( 基数( 值) 基值) 基值) 基值) 值( 值) 值(美元) 底值) 底值(美元) 值) 值) 底值(美元) 基值) 值(美元) 值) 基值(美元(美元) 值) 值) 值(美元(美元) 值) (美元) 值) 值) 值) 值) 值) (美元) (美元) (美元) 值) 值) (美元) 值) 值) (美元) (美元(美元) (美元) (美元) (美元(美元) (美元) 值) 值) 值) 值) 值) 值) 值) (美元) (美元) (美元) (美元(美元) (美元) (美元) (美元) (美元) (美元) (美元