Dialogue relation extraction (DRE) aims to detect the relation between two entities mentioned in a multi-party dialogue. It plays an important role in constructing knowledge graphs from conversational data increasingly abundant on the internet and facilitating intelligent dialogue system development. The prior methods of DRE do not meaningfully leverage speaker information-they just prepend the utterances with the respective speaker names. Thus, they fail to model the crucial inter-speaker relations that may give additional context to relevant argument entities through pronouns and triggers. We, however, present a graph attention network-based method for DRE where a graph, that contains meaningfully connected speaker, entity, entity-type, and utterance nodes, is constructed. This graph is fed to a graph attention network for context propagation among relevant nodes, which effectively captures the dialogue context. We empirically show that this graph-based approach quite effectively captures the relations between different entity pairs in a dialogue as it outperforms the state-of-the-art approaches by a significant margin on the benchmark dataset DialogRE. Our code is released at: https://github.com/declare-lab/dialog-HGAT
翻译:对话提取(DRE)旨在探测多方对话中提到的两个实体之间的关系,在从互联网上日益丰富的谈话数据中构建知识图表和促进智能对话系统开发方面发挥着重要作用,DRE先前的方法没有真正地利用演讲者的信息,只是将发言者的姓名与各自发言者的名称相提并论。因此,他们未能模拟关键说话者之间的关系,这种关系可能通过代名词和触发因素给相关辩论实体带来更多背景。然而,我们为DRE提出了一个基于网络的图示关注网络方法,该图中含有有意义的连接语音、实体、实体类型和发音节点。该图被输入一个图形关注网络,用于在相关节点之间传播背景,有效地捕捉对话背景。我们从经验上表明,这种基于图形的方法在对话中非常有效地抓住不同实体对子之间的关系,因为它在基准数据集 DilogRE上大大超越了状态-艺术方法。我们的代码发布在: https://github.com/ decla-Hlab/lab/ 对话中,因为我们的经验显示不同实体对子之间的关系。