Neural network models often generalize poorly to mismatched domains or distributions. In NLP, this issue arises in particular when models are expected to generalize compositionally, that is, to novel combinations of familiar words and constructions. We investigate learning representations that facilitate transfer learning from one compositional task to another: the representation and the task-specific layers of the models are strategically trained differently on a pre-finetuning task such that they generalize well on mismatched splits that require compositionality. We apply this method to semantic parsing, using three very different datasets, COGS, GeoQuery and SCAN, used alternately as the pre-finetuning and target task. Our method significantly improves compositional generalization over baselines on the test set of the target task, which is held out during fine-tuning. Ablation studies characterize the utility of the major steps in the proposed algorithm and support our hypothesis.


翻译:神经网络模型往往对不匹配的域名或分布进行不均匀的概括化。 在《国家劳工政策》中,这一问题尤其出现在预期模型对组成进行概括化时,即对熟悉词汇和构造进行新组合时。我们调查有助于将学习从一个组成任务向另一个组成任务转移的学习表现:模型的表述和具体任务层次在战略上就一项改进前任务进行了不同的培训,这样它们就可以对需要构成的不匹配的分割进行广泛化。我们用这种方法对语义解析,使用三种非常不同的数据集,即COGS、GeoQuery和SCAN, 替代地用作预调整和目标任务。我们的方法大大改进了目标任务测试基准的构成概括化,该测试是在微调期间完成的。进化研究说明了拟议算法中主要步骤的效用并支持我们的假设。

0
下载
关闭预览

相关内容

语义分析的最终目的是理解句子表达的真实语义。但是,语义应该采用什么表示形式一直困扰着研究者们,至今这个问题也没有一个统一的答案。语义角色标注(semantic role labeling)是目前比较成熟的浅层语义分析技术。基于逻辑表达的语义分析也得到学术界的长期关注。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年5月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员