In this paper, we consider the task of space-time video super-resolution (ST-VSR), which simultaneously increases the spatial resolution and frame rate for a given video. However, existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames or avoiding the speed degradation in the inference using deformable ConvLSTM strategies for alignment. % Some recent LSTM-based ST-VSR methods have achieved promising results. To solve the above problem of the existing methods, we propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames. Specifically, we first use bi-directional optical flow to update the hidden state and then employ a Feature Refinement Module (FRM) to refine the result. Since we could fully utilize a large range of neighboring frames, our method leverages local and global information more effectively. In addition, we propose an optical flow-reuse strategy that can reuse the intermediate flow of adjacent frames, which considerably reduces the computation burden of frame alignment compared with existing LSTM-based designs. Extensive experiments demonstrate that our optical-flow-reuse-based bidirectional recurrent network(OFR-BRN) is superior to the state-of-the-art methods both in terms of accuracy and efficiency.
翻译:在本文中,我们考虑了空间时间视频超分辨率(ST-VSR)的任务,该任务同时提高了某一视频的空间分辨率和框架率,然而,现有方法通常在如何有效利用来自一系列相邻框架的信息或者利用可变化的ConvLSTM调整战略避免推断速度下降方面遇到困难。% 最近一些基于LSTM的ST-VSR方法取得了有希望的成果。为了解决现有方法的上述问题,我们建议采用粗到平双向双向双向双向循环神经网络,而不是使用CONLSTM来利用相邻框架之间的知识。具体地说,我们首先使用双向光学流动来更新隐藏状态,然后使用精度精度精度修正模块来改进结果。由于我们可以充分利用大量相邻框架,我们的方法能够更有效地利用当地和全球信息。此外,我们建议采用光学流再利用相邻框架的中间流战略,这样可以大大降低与现有的LSTMTMTM-MTM和双向网络的常规精度设计相比,框架调整的计算负担。我们的光学-光学-光学-光学-光学-光学-光学-光学-光学-光导-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光向-光学-光学-光学-光学-光向-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光向-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光向-光学-光学-光学-光学-光学-光学-光学-向-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光向-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-光学-