Existing Optimal Transport (OT) methods mainly derive the optimal transport plan/matching under the criterion of transport cost/distance minimization, which may cause incorrect matching in some cases. In many applications, annotating a few matched keypoints across domains is reasonable or even effortless in annotation burden. It is valuable to investigate how to leverage the annotated keypoints to guide the correct matching in OT. In this paper, we propose a novel KeyPoint-Guided model by ReLation preservation (KPG-RL) that searches for the optimal matching (i.e., transport plan) guided by the keypoints in OT. To impose the keypoints in OT, first, we propose a mask-based constraint of the transport plan that preserves the matching of keypoint pairs. Second, we propose to preserve the relation of each data point to the keypoints to guide the matching. The proposed KPG-RL model can be solved by Sinkhorn's algorithm and is applicable even when distributions are supported in different spaces. We further utilize the relation preservation constraint in the Kantorovich Problem and Gromov-Wasserstein model to impose the guidance of keypoints in them. Meanwhile, the proposed KPG-RL model is extended to the partial OT setting. Moreover, we deduce the dual formulation of the KPG-RL model, which is solved using deep learning techniques. Based on the learned transport plan from dual KPG-RL, we propose a novel manifold barycentric projection to transport source data to the target domain. As applications, we apply the proposed KPG-RL model to the heterogeneous domain adaptation and image-to-image translation. Experiments verified the effectiveness of the proposed approach.


翻译:基于关键点引导的最优输运方法 现有的最优输运方法主要是根据输运成本/距离最小化的标准推导出最优输运计划/匹配,这可能导致在某些情况下出现错误匹配。在许多应用中,在领域之间注释几个匹配的关键点是合理的,甚至是轻松的注释负担。因此,探索如何利用注释的关键点来引导最优输运方法的正确匹配是有价值的。本文提出了一种新颖的关键点引导模型 by ReLation preservation (KPG-RL),该模型通过关键点引导搜索最优匹配 (即最优输运计划) 以实现最优输运。为了在最优输运中加入关键点,首先,我们提出了一种基于掩码的输运计划约束,以保持关键点对之间的匹配关系。其次,我们提出保持每个数据点与关键点的关系以引导匹配。所提出的 KPG-RL 模型可以使用 Sinkhorn 算法求解,并且适用于即使在不同空间支撑分布中也适用。我们进一步将关键点的引导约束用于 Kantorovich 问题和 Gromov-Wasserstein 模型中。同时,将所提出的 KPG-RL 模型扩展到了偏微分最优输运设置。此外,我们还推导出 KPG-RL 模型的对偶形式,并使用深度学习技术进行求解。基于从 KPG-RL 的对偶模型中学到的输运计划,我们提出了一种新颖的流形重心投影方法,将源数据输运到目标领域中。作为应用,我们将所提出的 KPG-RL 模型应用于异构领域自适应和图像到图像的转换中。实验验证了所提出的方法的有效性。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】自然中的表面法向量(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员